CodeArts Repo

User Guide

Issue 01
Date 2024-11-11

HUAWEI

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.

Address: Huawei Cloud Data Center Jiaoxinggong Road
Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

CodeArts Repo

User Guide Contents

Contents
T Process Of COAEAILS REPO.......ccuicieruierieceieenneeeseenneeseesanessesssssssssssssssassssessssssasssssassssssassssasasss 1
2 PUFChASing COA@AILS........ccuiereereeeeereeneereeeeecaeeseesseeseessessesssssssessessssssesssessesssessessssssasssassassasnne 2
3 Accessing CodeArts Repo HOMEPAGE........uicerceiereecneeneennneseesnneseesssesassssssasessessssssssasssaasans 4
4 Environment and Personal Settings.......ccccooiviiiniiiinnerninnnninnniinnnnsnsnnssssnssssssnssssesnses 5
4.1 Installing and CONFIGQUIING Gttt ss st s s s s st ensssssssesassssssnsansnns 5
A2 KBY ..ttt ettt ettt ettt ettt et h ettt a et £ e A £ e b A et At b A ettt £t AR bt A bttt a et et h et et a et ettt aetas 6
4.3 CoNFIGUING QN SSH PrIVAte KEY.....oiu ittt ees s sases s es sttt 6
4.4 Configuring HTTPS PASSWOIT.........ccvririrriiereinieirieisesessissessesesseasessss st ssnssssssssnsssssssssssssnns 8
4.5 CoNfiGUING N ACCESS TOKEN......ovrvririeirireiesississsssissss st ssesssssss s s sss st st st sssssssssssssssssssssnssssssssssssssssssassassnssssssssssnsanes 9
4.6 CoNfiIGQUIING @ GPG PUDBLIC KBY.....ooueeeieieeieisisicie sttt ss st s s s bbbt ss s sssssssssssnssnsssnssses 10
4.7 CONFIGUIING GIT LFS ..ottt s bbbt st s e saeen 13
5 Migrating Code and Syncing @ REPOSItOry........ccieveerieceeriererneecrennnecseesneeseeseesaessnssannns 14
5.1 RepoSitOry Migration OVEIVIEW........c.c.oeeiriririieieirieeieieiee ettt sttt ettt sttt sa st s b eas st etenssesessasannas 14
5.2 Migrating a Third-Party Git Repository t0 COAEAIS REPO.......cieieeeieieieeeteeeteetse ettt snes 14
5.2.1 Importing a Git Repository USING @ URL. ...ttt sttt ssssessssssnens 14
5.2.2 IMporting @ GItHUD REPOSITOIY.......oiuieeieeieieirississiesieeie sttt tssss s s s ssssss st s s ssssassss s s s sssssssnssnssnses 16
5.3 Importing a Local Git Repository t0 COAEAITS REPO.......curierierreireireieeireiseissesesss s ssss s sssesssssssssssssssssssssssssssnes 17
5.4 Migrating an SVIN COd@ REPOSITONY.....cvuririririrrireiriereinesieisississtssisessessessessnsssssns 18
5.5 SYNCING REPO SELLINGS. ..ottt sttt st s st s sttt st seas s eaesseastsesessssesassesnssesans 23
5.6 Verifying the IMPOrt PEIMISSION.c.cieieieieeieieisie ettt sassss bbbt ssssassss bbb s s s ssssssssnsansensenen 23
5.7 ODbtainiNg @N ACCESS TOKEN.......oiuiiireeereircireie ettt ettt ess sttt s s st eassassasseees 24
5.8 Entering Basic INfOrmation fOr @ REPOSITONY.......cvieirierirerieieieiseeesisesis ettt ssssssasssassssssnsns 24
6 Creating @ REPOSITOrY ... iceeeeeeceecereneeceeceecetesneessesssnsesnsssasessssssnsssnsssasesassssasssne 26
6.1 Creating Repos iN DiffEr@Nt SCENAIIOS. ...ttt s sttt bbb s s s ssas 26
6.2 CreatiNng @ REPOSITONY ..ottt ettt sttt bt e bbb e et sen st seassstassen 26
6.3 Creating a Repository USING @ TEMPLAtE........coiiieieieeeeeieieisistsstestsissssssss st st ssssse s sss s st ssssssssssssansans 28
6.4 FOIKING @ REPOSITONY ...ttt et ee st s bbb bbbttt 28
7 VIEWING ACHIVITIES....ceieeeeeeeeeeectetectneeceesetceeseseseesaesssssnssssesasssssssssssssssssasssssssssssssassssas 32
8 Viewing Repository StatistiCs......cccccvierveeiriirieriereereeceecseecsneeseesescsssesasesneessesssasssssesansns 33
9 Configuring RepoSIitory SEtEiNgS.......ccuiriirirnierieeeeceeccneeceeeesneeeesaeesessneessesssssassnens 35

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

CodeArts Repo

User Guide Contents
9.1 Configuring REPOSILONY POLICIES........ovviririeieeieireisies ittt st ss st ass s st s st ssssssss s snsenes 39
9.1.1 Configuring Protected BranCh RULES..........cc.ooreiririeee ettt ettt sss 39
9.1.2 Configuring Protected BranCh RULES............cciieieeieieiesisteeesiesiesis sttt sassas s s s s ss s sssssssassassssnsns 40
9.1.3 Configuring Code COMMUL RULES.........coorurirririreereisirieeesisisissesseseessas s ssssss s sssssssssssssssssss st ssssssssssssssssssssssssssnsens 40
O.71.4 REVIEW COMIMENTS......iuiiuiieeieteieesietseee sttt stae s ts et st es sttt ettt ettt bttt b et etaesetaebees 41
O.T.5 IMR EVALUTION. cc.c ettt ettt es sttt 43
10 Hierarchical Repository Management............ceeeeeeeneeceeneeceeseenseeseeseeseesseessssseesaens 44
10.T Creating @ REPOSITONY GIrOUP.....cccviriieeiieriresiessissesssesssessessssessssessssessssessssesssssssssssses 44
10.2 USING REPOSIEONY GIOUPS.....oiuiieerieniienieisesisieisestsesstsesstsessasessssssssssssssssstsssssasssessssssssssssssssssssssssssssssssssssessssssassesassssans 45
10.2.1 Viewing the REPOSILOrY GrOUP LiST......coioruiriiriereirierieieisireiseiseisteeesee sttt sttt essssss s essesssassassssesses 45
10.2.2 Viewing RepoSitOry GroUP DELAIlS......cccociiiieieeieieieieises sttt sttt sss s ss st sssssssassansnens 46
10.2.3 Viewing the Repository Group HOMEPAGE.ccvwirerirerieieireeseissenesssessssss s sssns 47
10.2.4 Managing Members Of @ REPOSITOrY GrOUPccovuiueuriurceririsieireiseesetseis ettt essesseasess st sssssssseanens 47
10.3 CONFiIGUIING REPOSILOIY GIOUPS.....cviverieririerereieisisiesiessseesssesessssssssssssssesssssssssssssssssssasssssssssssssssssssssssssssssssssessssssssssansans 49
10.3.1 RepOSItOry GroUP INFOIMAtION.. ...ttt sttt s sttt ssnsssssssnsns 49
10.3.2 REPOSITONY SEELINGS. ...vuieiieeieiricerietrietreet sttt ettt ettt et s bbb etaesaes 49
10.3.3 RISKY OPEIALIONS......cveieiririesieeeeiieisssis st sessss s ssssss s st s ssssssssssssss st s s ssessessssasssssssssssessessessesssssssanssnssssnsesssssnsans 51
10.3.4 PermisSion ManN@QEMENT ...ttt sttt ittt ettt ettt bttt st st et essassbetassetasseeas 51
11 Configuring @ REPOSITONY......ccuieeicieeereereereereeceeseeeeeseessessassssesasssessassseessessasssssssssasssasss 57
11.1 Configuring REPOSILONY SETLINGS....vuverierierirririririss sttt sssssssss s s s sssnsssssssssssssnssnsenes 57
11.2 VieWiNg the REPOSITOIY LiST.....coiuiuierierieeieieieireiseis sttt ettt es sttt es st esses s ssesas 57
11.3 VieWiNg REPOSITONY DELAILS.cceveriririeiiieiesieiesiisie sttt sse s sss st sssssss s sassss bbb es s sssssssssssssssbasssnsensssnsans 58
11.4 Viewing REPOSITOrY HOMEPAGE. ...ttt sttt sttt sttt ess s sssassasseen 60
171.5 BACKING UP @ REPOSITONY...cuvuiuiuieieieireiriieeieisieists ettt ettt es sttt ses e s s snsees 63
12 Managing Repo Member PermiSSiONS..........cccccecierierresenseeeseesnnssessnsessessnsssssssssassssssasnes 64
12.1 IAM Users, Project Members, and Repository MemDETS...........ccv e ssiseeseeseesessessessssssenes 64
12.2 Configuring Project-Level PEIMISSIONS. ...ttt sessss s ssssssss s ssssssssssssssssssanssnsssssnens 65
12.3 Configuring REPO-LEVEL PEIMMISSIONS......c.cvuvirieririeriiririsisissississesessessss s sssnes 68
12.4 Syncing Project Members t0 COAEAITS REPO.......cciuiuiurrurierieieisireisei ettt e isess st ssss s sssssssanen 71
13 Cloning or Downloading Code Repo to a Local PC..........ccieieerverncennuecseennncsnecnncnnnns 72
13.1 Differences Between Cloning and Downloading @ REPOSITONY........cccriuniirierieneneeineireiseeseesesese e seeseeees 72
13.2 Using the SSH Key to Clone @ Repo t0 @ LOCAL PC......iiirceseeeeisie s sssisssssssssss st ssssssas s ssssenans 73
13.3 Using HTTPS to Clone Code from CodeArts Repo to a Local COMPULEN.......ccovrvrrrerernerrereereineereeseneersseens 74
13.4 Using a Browser to Download Code Package to @ LOCAl PC........ooieriereriieieireireireineeees e 75
14 Uploading Code Files to COA@AIrtS REPO........ccieereerienercresersnnssansnnssnssnsessssssesassssssasns 77
14.1 Editing and Creating @ Merge REQUEST.c.cciuuriiriereeieieieseisetseee ettt es s st se s ess st seees 77
14.2 Creating a Branch and Developing Code in Git BaSh.......ccccciiniieieecenininiesseesesessessesssssessssessasssssssssssanes 77
14.3 Committing Code in Eclipse and Creating @ Merge REQUEST..........ccovrererirererrrineereeneneessss s ssssessessssssssssssenns 80
14.4 Using git-crypt to Transmit Sensitive Data on the Git ClENt.......coovierrrrrrrer e 91
T4.5 VIieWiNg COMMUE HISTOIY ..ottt ss st st a s nss s s sessesnsssnnsen 100

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

CodeArts Repo

User Guide Contents
15 Developing @ WOrKFLOW..........ociiiiinniiieeietneicteneesessnnesesnsesssssessssnssssssssessssassssssssns 102
151 WOTKILOW OVEIVIEW.....ceeeeee ettt st ettt sb et anenetans 102
15.2 CeNLIAlIZEA WOTKILOW.ceieee et et et 102
15.3 FEature BranCh WOTKFLOW......c.c. ittt ettt ettt 103
16 Creating and Configuring a CodeArts Project............cvivnvcncnnrcninenscnncsenccnenes 105
16.1 Configuring Project-Level COMMUEL RULES.........ccorrirreeiescsesssesie et s st sssss s ssssssssssssssnsnsnes 105
16.2 Configuring Project-Level REPO SEETLINGS. ..ottt ettt essess s ensenas 115
T6.3 E2E SOELINGS. .o vueiierieeeirieieteesisest sttt ae st sttt st sess s sesstse st ssse s s st s s s st esssseassseaassseasteasssensssessstnssssnsssnnsssnnens 124
16.4 WEDNOOK SEELINGS....eveirieririeireisie sttt sttt sss s sss s bbbt ss st s s s s st esssesesssassssssanssnsenssnsessnsas 129
17 Committing Code to CodeArts Repo and Creating a Merge Request.................. 132
17.1 Setting Repo-Level Merge REQUESE RULES...........ocovriririreeieecsesieeee sttt sss st ssssssssssssssssssssssssnens 132
17.2 Configuring Merge Request NOTITICAtIONS........c.ov ettt 137
17.3 Resolving Review Comments and Merging COAE........rnirnieneieeneeiessssissssessessssssssssssssessessssssssssansons 140
18 Managing Merge REQUESTS........ccuiereerreecreiereeeneeneeceecsanesaeessesssesssssssnssssssssssssnsssassssassns 143
18.1 Detailed Description of Review COMMENTS GAtO......cccceurieeireireirrireieeeeeeieie s asstesessss s sssssssssssssssssssssssssssans 143
18.2 Resolving Code CONFLICES IN @N MRttt sttt sss s s ss st sss s snsenanes 144
18.3 Creating @ SQUASH MEIGE........c ettt ettt st s sttt 152
19 Managing Code Files......uuinirninienereieneicnesenssssasssssasssessssssessssssssassssesassssssssssssssssss 154
T9.T MANAGING FILES...ceiieiee ettt et a st bbbt s st e s e ses 154
19.2 MANAGING COMIMILS...oitiiriririeirieieieeeie ettt sss st st tsssesas e s s sssssssssssssssssssssssssssssssssessssesassessssessssensssessnsanes 159
19.3 MANAGING BIANCRES........eeeeeeeetrreiee ettt s ss st s s s s s s s st et ensnssnssns 159
T9.4 MANAGING TAGS. ..ttt sttt sttt st sttt bbb se sttt bbb ettt bbb ettt aeene 170
19.5 MaNAGiNg COMPATISON....ccvuiririeeiieriieeieeeiseeisesesssssssessssesssssssssssssssssesassssssssssssssssessssessssessssessssessssessssessssessssssssssssns 176
20 Security ManagemeENnt......... e eiceeeereeceeceeereeeceeceeesaeesaeessesssesssasesasessasssssssnsesanssnes 177

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

CodeArts Repo
User Guide

1 Process of CodeArts Repo

Process of CodeArts Repo

The following figure shows how to use CodeArts Repo.

Access CodeArts Repo

Repository
administrator

Review MRs and merge code

Configure a project and repositories

Install a client compatible with
CodeArts Repo Key

I Configure CodeArts Repo Keys

Clone/download repositories to your
Developers

host

Push code to CodeArts Repo and
create a merge request

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

CodeArts Repo
User Guide 2 Purchasing CodeArts

Purchasing CodeArts

Prerequisites
To perform this operation, you must have any of the following permissions:

e Tenant Administrator

e DevCloud Console FullAccess and BSS Administrator
e DevCloud Console FullAccess and BSS Finance

e DevCloud Console FullAccess and BSS Operator

e Custom policies that contain all permissions in DevCloud Console FullAccess
as well as the bss:order:view, bss:order:pay, and bss:order:update
permissions.

Purchasing a CodeArts Package

CodeArts uses yearly/monthly billing, and provides the free, basic, professional,
and enterprise edition packages to meet the requirements of different user scales.
For details about these packages, see Package Overview.

Step 1 Go to the Buy CodeArts page.

Step 2 Set the region, edition, number of users, required duration, and auto-renewal,
agree to the agreement, and click Next.

(11 NOTE

e You are advised to select the nearest region based on your physical region where your
services are located to reduce network latency. The purchased package takes effect only
in the corresponding region and cannot be used across regions.

e The number of users and required duration in the Free edition are fixed and cannot be
changed.

Step 3 Confirm the order content. If you need to modify it, click Previous. If the content
is correct, click Pay.

Step 4 Follow the prompts to complete the payment.

Step 5 Check the package purchase record back on the CodeArts console.
If the purchase fails, rectify the fault by referring to Billing FAQs.
----End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

https://support.huaweicloud.com/intl/en-us/price-devcloud/codearts_29_0005.html
https://console-intl.huaweicloud.com/devcloud/?locale=en-us#/period-new/apply?version=combo_free&package_type=combo
https://support.huaweicloud.com/intl/en-us/price-devcloud/codearts_29_0028.html

CodeArts Repo
User Guide 2 Purchasing CodeArts

Purchasing Resource Extension

CodeArts provides parallel job extension for multiple services. For details, see
Resource Extension.

Step 1 Go to the Buy CodeArts Resource Extension page.

Step 2 Set the region, product, type, required duration, and auto-renewal, agree to the
agreement, and click Next.

(11 NOTE

e The configuration items for the selected product and type are displayed. Select the
configuration items you need.

e Select a region where you have purchased CodeArts Basic or higher edition, or you
cannot purchase resource extensions.

Step 3 Confirm the order content. If you need to modify it, click Previous. If the content
is correct, click Pay.

Step 4 Follow the prompts to complete the payment.

Step 5 Check the resource extension purchase record back on the CodeArts console.
If the purchase fails, rectify the fault by referring to Billing FAQs.
----End

Purchasing a Value-added Feature

CodeArts provides value-added features such as CodeCheck enhanced package.
For details, see Value-added Features.

Step 1 Go to the CodeArts value-added feature purchase page.

Step 2 Set the region, product, quantity, required duration, and auto-renewal, agree to
the agreement, and click Next.

(11 NOTE

e To purchase the CodeCheck enhanced package, select a region where you have
purchased CodeArts Pro or Enterprise edition.

Step 3 Confirm the order content. If you need to modify it, click Previous. If the content
is correct, click Pay.

Step 4 Follow the prompts to complete the payment.

Step 5 Check the value-added feature purchase record back on the CodeArts console.
If the purchase fails, rectify the fault by referring to Billing FAQs.
----End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

https://support.huaweicloud.com/intl/en-us/price-devcloud/codearts_29_0015.html
https://console-intl.huaweicloud.com/devcloud/?locale=en-us#/period-new/apply?package_type=resource
https://support.huaweicloud.com/intl/en-us/price-devcloud/codearts_29_0028.html
https://support.huaweicloud.com/intl/en-us/price-devcloud/codearts_29_0016.html
https://console-intl.huaweicloud.com/devcloud/?locale=en-us#/period-new/apply?package_type=feature
https://support.huaweicloud.com/intl/en-us/price-devcloud/codearts_29_0028.html

CodeArts Repo
User Guide 3 Accessing CodeArts Repo Homepage

Accessing CodeArts Repo Homepage

Step 1 Log in to the Huawei Cloud console with your Huawei Cloud account.

Step 2 Click = in the upper left corner of the page and choose Developer Services >
CodeArts Repo from the service list.
Step 3 You can access CodeArts Repo in either of the following ways:
e From the homepage
Click Try Now. This page displays the build task list of the current user.
e From the project page

a. Click Try Now.

b. On the navigation bar, click Homepage.

c. Click the name of the project to be viewed.

d. Choose Code > Repo. The repository list page of the project is displayed.
----End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

https://console-intl.huaweicloud.com/&locale=en-us

CodeArts Repo
User Guide 4 Environment and Personal Settings

Environment and Personal Settings

4.1 Installing and Configuring Git

For details about the clients supported by Repo and the installation guide link, see
Table 4-1.

Table 4-1 Compatible Git clients

Client Name (o)) Official Installation
Guide Link
Git client Windows Windows Git Client
Installation Guide
Linux Linux Git Client
Installation Guide
Mac Mac Git Client
Installation Guide
TortoiseGit Windows Windows TortoiseGit
Client Installation
Guide

After installing the Windows Git client, configure the user name and email

address. Enter the following command in Git Bash:
git config --global user.name your username
git config --global useremail your_email_address

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://git-scm.com/download/win
https://git-scm.com/download/win
https://git-scm.com/download/linux
https://git-scm.com/download/linux
https://git-scm.com/download/mac
https://git-scm.com/download/mac
https://tortoisegit.org/support/faq/#install
https://tortoisegit.org/support/faq/#install
https://tortoisegit.org/support/faq/#install

CodeArts Repo
User Guide

4 Environment and Personal Settings

(11 NOTE

4.2 Key

e Currently, CodeArts Repo cannot be managed using GitHub desktop.

e The username can contain letters, digits, and common characters, but cannot contain
characters no more than 32 in the ASCII code table. It cannot start or end with ., :; <>"
\\ and \. Any of the preceding characters appears at the beginning or end will be
ignored. To facilitate management, you can set this parameter to the username of
CodeArts Repo.

e CodeArts Repo supports TLS1.2 and TLS1.3. If Git is of the latest version, run the
following command to specify the TLS protocol version: In the preceding command,
test.com is the domain name for Git upload/download in CodeArts Repo, and tls1_2
indicates that the TLS protocol version is TLS1.2. For details about different Git client
solutions, see TLS protocol versions compatible with CodeArts Repo.
openssl s_client -connect test.com:443 -tls1_2

The Repo code repository supports SSH and HTTPS access protocols. You can use
either of the following methods for configurations.

The SSH key is a secure connection method between the local computer and
your Repo. Different users usually use different computers. Therefore, before
connecting to Repo via SSH, you need to generate your own SSH key on your
computer and add the public key to Repo. Once the SSH key is configured on
the local computer and the public key is added to Repo, all repos under this
account can use the key to connect to the computer.

An HTTPS password is a user credential used for pulling and pushing code
using the HTTPS protocol.

NOTICE

e In CodeArts Repo, the size of a single file to be pushed using HTTPS cannot
exceed 200 MB. To transfer a file larger than 200 MB, use the SSH mode.

e Only accounts that can be bound to email addresses can use the HTTPS
protocol.

GNU Privacy Guard (GPG) is a method used for digital signature and
authentication. When you push the local code to CodeArts Repo, the GPG
public keys ensure trusted sources and code integrity by signing and verifying
Git code commits and tags in Git.

4.3 Configuring an SSH Private Key

Step 1 Run Git Bash to check whether an SSH key has been generated locally. Run the
following command in Git Bash:
cat ~/.ssh/id_rsa.pub

If No such file or directory is displayed, no SSH key has been generated on
your computer. Go to Step 2.

If a character string starting with ssh-rsa is returned, an SSH key has been
generated on your computer. If you want to use the generated key, go to Step
3. If you want to generate a new key, go to Step 2.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/codeartsrepo_faq/codeartsrepo_06_0003.html

CodeArts Repo

User Guide 4 Environment and Personal Settings
Step 2 Generate an SSH key. Run the following command to generate a key in Git Bash:
ssh-keygen -t rsa -b 4096 -C your_email@example.com
In the preceding command, -t rsa indicates that an RSA key is generated, -b 4096
indicates the key length (which is more secure), and -C
your_email@example.com indicates that comments are added to the generated
public key file to help identify the purpose of the key pair.
If you select the ED25519 algorithm, run the following command to generate a
key in Git Bash:
ssh-keygen -t ed25519 -b 521 -C your_email@example.com
In the preceding command, -t ed25519 indicates that an ED25519 key is
generated, -b 521 indicates the key length (which is more secure), and -C
your_email@example.com indicates that comments are added to the generated
public key file to help identify the purpose of the key pair.
Enter the command for generating the key and press Enter. The key is stored in
~/.ssh/id_rsa by default, and the corresponding public key file is ~/.ssh/
id_rsa.pub.
Step 3 Copy the SSH public key to the clipboard. Run the corresponding command based
on your operating system to copy the SSH public key to your clipboard.
e Windows:
clip < ~/.ssh/id_rsa.pub
e Mac
pbcopy < ~/.ssh/id_rsa.pub
e Linux (xclip required):
xclip -sel clip < ~/.ssh/id_rsa.pub
Step 4 Log in to Repo and go to the code repository list page. Click the alias in the upper
right corner and choose This Account Settings > Repo > SSH Keys. The SSH Keys
page is displayed.
You can also click Set SSH Keys in the upper right corner of the code repository
list page. The SSH Keys page is displayed.
Step 5 In Key Name, enter a name for your new key. Paste the SSH public key copied in

Step 3 to Key and click OK. The message "The key has been set successfully. Click
Return immediately, automatically jump after 3s without operation" is displayed,
indicating that the key is set successfully.

--—-End

(11 NOTE

e After an SSH key is configured on a computer and the public key is added to CodeArts
Repo, all repos under the account can use the SSH key to connect to the computer.
Different users usually use different computers. Therefore, before connecting to
CodeArts Repo in SSH mode, you need to configure an SSH key on your computer.

e When you configure an SSH key, the following message is displayed: SSH Key Already
Exits, indicating that the key has been added to the account or another account.
Solution: Generate a new SSH key locally by referring to the preceding steps and
configure the generated key in CodeArts Repo.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

CodeArts Repo
User Guide

4 Environment and Personal Settings

4.4 Configuring HTTPS Password

When you push code to or pull code from CodeArts Repo, the repository verifies
your identity and permissions. HTTPS password is an identity authentication mode
for remote access to CodeArts Repo. You only need to set this once.

e HTTPS username

It consists of your tenant name and IAM username: Tenant name/IAM
username.

e HTTPS password

8 to 32 characters with at least three types of the following characters: digits,
uppercase letters, lowercase letters, and special characters, and cannot be the
same as the username of the HTTPS password or the reverse-order username.

Setting the HTTPS Password for the First Time

Step 1

Step 2

Step 3

Step 4

By default, the HTTPS password is your login password which can be synced in
real time. You can also perform the following steps to set the initial password.

Go to the repo list page of CodeArts Repo, click the nickname in the upper right
corner, and choose This Account Settings > Repo > HTTPS Password.

You can also go to the repo list page and click Set HTTPS Password in the upper
right corner.

Click Reset to go to the password resetting page if you are setting the password
for the first time. Click Set new password, fill in the New Password and Confirm
Password, and click OK. A dialog box is displayed, indicating that the password is
set successfully.

Regenerate the repository credential locally and check the IP address whitelist
when the new password is created. Otherwise, you cannot use CodeArts Repo
repositories.

Delete the local credential (for example, on Windows, choose Control Panel >
User Accounts > Manage Windows Credentials > Generic Credentials). Use
HTTPS to clone again, and enter the correct account and password in the dialog
box that is displayed.

Check whether the HTTPS password takes effect by referring to Verifying
Whether Your HTTPS Password Takes Effect.

--—-End

(11 NOTE

e If your account is upgraded to a HUAWEI ID, the tenant-level function of Use Huawei
Cloud login password is no longer supported (the function is still valid for IAM users).

e Federated users cannot be bound to email addresses and do not support the HTTPS
protocol.

e If the message " SSL certificate problem" is displayed when you perform step 3, run the
git config --global http.sslVerify false command on the Git client to disable the SSL
verification function of Git.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_08_0001.html

CodeArts Repo
User Guide

4 Environment and Personal Settings

Changing the HTTPS Password

Step 1

Step 2

Step 3

Go to the repo list page of CodeArts Repo, click the alias in the upper right corner,
and choose This Account Settings > Repo > HTTPS Password.

You can also go to the repo list page and click Set HTTPS Password in the upper
right corner.

Click Set new password. The page for resetting the password is displayed. Click
Change, fill in Old Password, New Password, and Confirm Password, and click
OK. A dialog box is displayed, indicating that the password is set successfully.

You can also click Reset. You need to bind an email address if you are setting the
password for the first time. Set Verification Code, New Password, and Confirm
Password, and click Save. A dialog box is displayed, indicating that the password
is set successfully.

Check whether the HTTPS password takes effect by referring to Verifying
Whether Your HTTPS Password Takes Effect.

--—-End

(11 NOTE

If the message "No backend available: service IAM" is displayed when you bind an email
address, contact your administrator to bind an email address for you, return to the HTTPS
password resetting page, and refresh it.

Verifying Whether Your HTTPS Password Takes Effect

After setting the HTTPS password, you can run the git clone https://
username:password@example.com/repo_path.git command in Git Bash to clone
the code repository to which you have access. Username indicates the HTTPS
username, Password indicates the HTTPS password, and example.com/
repo_path.git indicates the HTTPS address of the code repository to be cloned. If
the code is successfully cloned with the command, the HTTPS password has been
successfully set.

4.5 Configuring an Access Token

Log in to the CodeArts Repo service repository list page, click the nickname in the
upper right corner, choose This Account Settings > Repo > Access Token, click
New Token, and set parameters based on the following table.

Table 4-2 Description

Parameter Description

Token Name Mandatory Custom name with a maximum of 200 characters.

Description Optional. If the description is empty, -- is displayed in the list.
Max. 200 characters.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

CodeArts Repo
User Guide

4 Environment and Personal Settings

Parameter Description

Permissions This parameter is selected by default and cannot be modified.
Read/Write repo: Read from and write into repositories using
HTTPS.

Expired Mandatory Time when a token expires.

NOTE
30 days after current date by default, including current date. For
example, if a token is created on July 3, the default expiration date is
23:59:59 on August 2. The expiration date can be set to a maximum
of one year and cannot be empty.

After the parameters are set, the token is successfully generated. Copy and use it
in the application or script.

NOTICE

e For security reasons, the token will not be displayed after this dialog box is
closed. Keep the token safe. If you lose or forget it, generate a new one.

e A maximum of 20 tokens can be created for CodeArts Repo.

4.6 Configuring a GPG Public Key

Perform the following steps to generate and configure a GPG public key in

CodeArts Repo:

Download the GPG key generation tool from gpg4win official site.

Generate a GPG Key Pair.

Check whether the GPG key is generated successfully.

Copy the GPG key pair to the clipboard.

Go to the GPG key configuration page.

Set parameters for creating a GPG public key.

Check whether the GPG public key is successfully configured.

Step 1 Download the GPG key generation tool from gpg4win official site.

Step 2 Run the gpg --full-generate-key command on the local Git client, select the
encryption algorithm, key length, expiration time, and correctness in sequence as
prompted, and enter a username, email address, and comment, as shown in

F

igure 4-1.

Issue 01 (2024-11-1

1) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

https://www.gpg4win.org/

CodeArts Repo
User Guide 4 Environment and Personal Settings

Figure 4-1 Generating a GPG Key Pair
4> MINGW64:/

GmbH
stribute 1t.

bits 1 ong.

ould be walid.

a user ID to identify

Step 3 After confirming that the information is correct, type O and press Enter as
prompted. In the displayed dialog box for entering and confirming the password,
enter the correct password to generate a key.

If the information shown in Figure 4-2 is displayed, the GPG key is generated
successfully.

Figure 4-2 Successful generation of a GPG key

public and secret key created and signed.

pub

uid
sub

Step 4 Run the gpg --armor --export command to export the public key, as shown in
Figure 4 Exporting the GPG public key, and copy the public key to the clipboard,
including ----- BEGIN PGP PUBLIC KEY BLOCK----- and ----- END PGP PUBLIC KEY
BLOCK----- .

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

CodeArts Repo
User Guide 4 Environment and Personal Settings

Figure 4-3 Exporting the GPG public key

} gpg —--armor -t
BEGIN PGP PUBLIC KEY BLOCK-----

Step 5 Log in to the repository list page of CodeArts Repo, click the alias in the upper
right corner, and choose This Account Settings > Repo > GPG Public Keys.

Step 6 Click New GPG Public Key. On the page that is displayed, set the following
parameters.

Table 4-3 Parameters for creating a GPG public key

Parameter Description

Title Mandatory Custom GPG public key name with a maximum of
200 characters.

GPG Public Mandatory Paste the GPG public key copied from Step 4 to

Keys this text box.

Description Optional. Enter a maximum of 200 characters. If the

description is empty, -- will be displayed in the list.

Step 7 Click OK. The GPG public key is created successfully and the GPG public key list
page is displayed.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

CodeArts Repo
User Guide 4 Environment and Personal Settings

(11 NOTE

e A GPG public key cannot be used repeatedly. If you fail to add a GPG public key, check
whether you have added the public key and whether there are redundant spaces before
and after the public key.

e After the public key is added successfully, you can view the added public key on the GPG
Public Keys page. If the public key is no longer used, you can delete it.

--—-End

4.7 Configuring Git LFS

Git Large File Storage (LFS) is an extension of Git and is used to manage large
binary files in Git repositories. Git LFS stores large files outside Git repositories to
prevent Git repositories from becoming too large and slow. It supports most
common binary file formats, including image, video, and audio. You can manage
large files and code separately, and use Git's versioning function to track and
manage them. Git LFS can also lock files and control versions to avoid conflicts
when multiple users are editing large files at the same time.

To use Git LFS, you need to install the Git LFS client and enable the Git LFS
extension in Git repositories. You need to add large files to the Git LFS tracking list
for better management.

Table 4-4 Installing Git LFS

(O Official Installation Guide Link
Windows Windows Git-LFS installation guide
Linux Linux Git-LFS installation guide
macOS macOS Git-LFS installation guide

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

https://github.com/git-lfs/git-lfs?tab=readme-ov-file#on-windows
https://github.com/git-lfs/git-lfs?tab=readme-ov-file#on-linux
https://github.com/git-lfs/git-lfs?tab=readme-ov-file#on-macos

CodeArts Repo
User Guide 5 Migrating Code and Syncing a Repository

5 Migrating Code and Syncing a
Repository

5.1 Repository Migration Overview

This section describes how to migrate your repository to CodeArts Repo. Select one
of the following migration solutions based on your repository storage mode:

e Migrating a third-party git repository.
e Importing a local git repository.
e Migrating an SNV code repository.

5.2 Migrating a Third-Party Git Repository to CodeArts
Repo

5.2.1 Importing a Git Repository Using a URL

Step 1 Go to the CodeArts Repo homepage, click New Repository, and select an existing
project from the Project drop-down list box or create a project.

Step 2 Set repo type to Import and import from Git Url. For details about how to set
parameters, see Table 5-1.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

CodeArts Repo
User Guide

5 Migrating Code and Syncing a Repository

Table 5-1 Parameters for obtaining authorization

Parameter Description

Source Repository URL Mandatory. Specify the repo path to

be imported. The source repo path
must start with http:// or https:// and
end with .git.

NOTE

e If the repo file is too large or the
network quality is poor, it may take
more than 30 minutes to import the
repo file. If the import times out, you
are advised to use the clone or push
function on the client. For details, see
External Repository Import Times
Out.

e The repository domain must be
connected to the service node.

Verification to Access Source Repo Mandatory. There are two cases:

e |f the imported source repository is
open to all visitors, select Not
needed.

e |f the imported source repository is
private, select Needed. Currently,
two authentication modes are
supported: By service endpoint and
By username and password. For
details about how to set
parameters, see Verifying the
Import Permission.

Step 3 Click Next. On the Basic Information page, set parameters by referring to the
parameter table.

Step 4 Set the parameters for syncing a repo by referring to table 1.

--—-End

(10 NOTE

After the parameters are set, the Code page for creating the repo is displayed.

On the repository list page, if the new repository name is in gray with a red exclamation
mark next to it, the repository fails to be imported. The possible cause is that the
username, password, or access token is incorrect. You can delete the code repository and
perform the preceding steps to import the external repo again.

Currently, Git supports the following external import sources: bitbucket.org,
code.aliyun.com, coding.net, git.qcloud.com, gitee.com, github.com, gitlab.com,
visualstudio.com and xiaolvyun.baidu.com.

After a code repo is created, only the creator can access the repo. Other project
members need to be manually added to the repo and assigned with permissions.
Therefore, you need to manually add members to the repository and configure access
permissions for the new members.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

https://support.huaweicloud.com/intl/en-us/codeartsrepo_faq/codeartsrepo_06_0006.html
https://support.huaweicloud.com/intl/en-us/codeartsrepo_faq/codeartsrepo_06_0006.html

CodeArts Repo
User Guide 5 Migrating Code and Syncing a Repository

5.2.2 Importing a GitHub Repository

Step 1 Go to the CodeArts Repo homepage, click New Repository, and select an existing
project from the Project drop-down list box or create a project.

Step 2 Set the repo type to Import and import from Github.

Step 3 Choose an authorization mode. You can grant permissions By service endpoints
(see Service Endpoint Authorization) or By personal access tokens (see
Obtaining an Access Token).

Step 4 Click Next. On the Select Repository page, select the repo to be imported and
click Next. On the Basic Information page, enter the basic information by
referring to the Entering Basic Information for a Repository table and set the
parameters for syncing a repo information by referring to Table 1 Parameters for
syncing repo settings.

----End
Service Endpoint Authorization

Table 5-2 Service endpoint authorization

Parameter Description

Service Endpoint Name Mandatory. Enter a name with a
maximum of 256 characters.

Authentication Mode Mandatory. Select a value as required.

e If you select OAuth, click Authorize
and OK, and the GitHub login page
is displayed. Enter the GitHub login
account and password, and click
Authorize huaweidevcloud to
complete the authorization. After
the authorization is successful,
Authorized successfully is
displayed, and Service endpoint
created successfully. is displayed in
the upper right corner. You can
select the created endpoint from
the drop-down list box.

e |f you select By personal access
token, use an account with the
repo administrator permissions to
create an access token on GitHub.
For details, see Obtaining an
Access Token.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

CodeArts Repo
User Guide

5 Migrating Code and Syncing a Repository

5.3 Importing a Local Git Repository to CodeArts Repo

Importing a Local Git Repository

Step 1

Step 2

Step 3
Step 4
Step 5
Step 6
Step 7

If your repo has not been incorporated into any version system, such as Git or
SVN, perform the following operations in the root directory of the source code to
import the local code repository to CodeArts Repo.

Go to the CodeArts Repo homepage, click New Repository, and select an existing
project from the Project drop-down list box or create a project.

Set Repository Type to Common, enter parameters, deselect Generate README
and .gitignore Programming Language, and a code repository is created. The
homepage of the code repository is displayed.

Run the git init command to create an empty Git repo directory on the local PC.
Run the git add * command to add the file to the version library.

Run the git commit -m "init commit" command to create an initial commit.
Run the git remote add origin Remote repo address command.

Run the git push -u origin master command to push the local Git repository to
the code repository created in CodeArts Repo.

--—-End

NOTICE

After a code repo is created, only the creator can access the repo. Other project
members need to be manually added to the repo and assigned with corresponding
permissions. Therefore, you need to manually add members to the repository and
configure access permissions for the new members.

(11 NOTE

If the repo capacity of CodeArts Repo is about to be used up, go to the code repo details
page and perform the following operations to clear code repo resources:

e Choose Code > Branches, select unnecessary branches, and click = to delete them.

e Choose Code>Tags, select unnecessary tags, and click — to delete them.
e Choose Settings > Repo Management > Space Freeing and clear the cache data.

e Choose Settings > Repo Management > Submodules and delete unnecessary
submodules.

Importing a Local Third-Party Git Repository to CodeArts Repo

If you clone the code from a third-party Git repository to the local host and
modify the code repository, you can perform the following steps to import the
modified Git code repository to CodeArts Repo:

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

CodeArts Repo
User Guide

5 Migrating Code and Syncing a Repository

Step 1 Go to the CodeArts Repo homepage, click New Repository, and select an existing
project from the Project drop-down list box or create a project.

Step 2 Set Repository Type to Common, enter parameters, deselect Generate README
and .gitignore Programming Language, and a code repository is created. The
homepage of the code repository is displayed.

Step 3 Run the git commit -m "init commit" command to create an initial commit.

Step 4 Run the git remote add origin Remote repo address command.

Step 5 Run the git push -u origin master command to push the local Git repository to
the code repository created in CodeArts Repo.

--—-End

5.4 Migrating an SVN Code Repository

Import an SVN repo to CodeArts Repo

Step 1 Go to the CodeArts Repo homepage, click New Repository, and select an existing
project from the Project drop-down list box or create a project.

Step 2 Set repo type to Import and import from SVN. For details about how to set

parameters, see Table 5-3.

Table 5-3 Parameters for importing the SVN repo

Parameter

Description

Source Repository URL

Mandatory. Specify the repo path to
be imported. The source repo path
must start with http://.

NOTE

e If the repo file is too large or the
network quality is poor, it may take
more than 30 minutes to import the
repo file. If the import times out, you
are advised to clone or push the client.
For details, see Using Git Bash to
Import an SVN repo to CodeArts
Repo.

e Online import is simple, and branches
and tags in the SVN can be moved. If
you want to continue development
based on the code repository, use the
Git Bash client to import the code
repository. For details, see Using Git
Bash to Import an SVN repo to
CodeArts Repo.

e The repository domain must be
connected to the service node.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

CodeArts Repo

User Guide 5 Migrating Code and Syncing a Repository
Parameter Description
Verification to Access Source Repo Mandatory. There are two cases:

e |f the imported source repository is
open to all visitors, select Not
needed.

e |f the imported source repository is
private, select Needed. Currently,
two authentication modes are
supported: By service endpoint and
By personal access token. For
details about how to set
parameters, see Verifying the
Import Permission.

Step 3 Click Next. On the Basic Information page, set parameters by referring to the
parameter table.

Step 4 Set the parameters for syncing a repo by referring to table 1.

--—-End

Using Git Bash to Import an SVN repo to CodeArts Repo

Step 1 Obtain committer information of the SVN repository.

1. Use TortoiseSVN to download the repository to be migrated to the local
computer.

2. Go to the local SVN repository (KotlinGallery in this example) and run the
following command on the Git Bash client:
svn log --xml | grep "A<author" | sort -u | \awk -F '<author>' {print $2}' | awk -F '</author>" '{print
$1} > userinfo.txt
After the command is executed, the userinfo.txt file is generated in the
KotlinGallery directory, as shown in the following figure.
» DataDisk (D) » workspace » SVN » B

Es

B > KotlinGallery

% branches

& tags
& trunk

b= LSRN

1 wD
~mD

I @/ userinfo.bet

3. Open the userinfo.txt file. You can view the information about all committers
who have committed code to the repository in the file.

4. Git uses an email address to identify a committer. To better map the SVN
repository information to a Git repository, create a mapping between the SVN
and Git usernames.

Modify userinfo.txt so that in each line, SVN author = Git author nickname
<email address >. The following figure shows the mapping format.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

CodeArts Repo
User Guide 5 Migrating Code and Syncing a Repository

El nserinfo. txtEd

1 admin = Xiehao <xiehaco @ . COT>
2 fanghua = fanghua <fanghua @ . COm>
5 Xiayan = xXiavan <xXiavan @ . COm>

Step 2 Create a local Git repository.

1. Run the git init command to create an empty Git repo directory on the local
PC.

2. Copy the userinfo.txt file in step 1 to the directory and run the following
command to switch to the directory:
cd Destination directory address

3. Start the Git Bash client in the directory and run the following command to

clone a Git repo:
git svn clone <svn_repository_address>--no-metadata --authors-file=userinfo.txt --trunk=trunk --
tags=tags --branches=branches

The following table lists parameters in the command. Set the parameters as

required.
Parameter Description
--no-metadata Indicates that the SVN metadata is not imported to the
Git repo. In this way, the size of the Git code repo is
reduced, but some SVN historical information may be
lost.
--authors- Indicates that the specified user information file is used

file=userinfo.txt | for author information mapping.

--trunk=trunk Indicates that the trunk branch in SVN repo is used as
the main branch of Git code repo.

--tags=tags Indicates that the tags directory in the SVN code repo is
used as the tag of the Git code repo.

-- Indicates that the branches directory in the SVN code
branches=branch | repo is used as the branch of the Git code repo.
es

After the command is executed successfully, a Git code repo named
KotlinGallery is generated locally.

» Data (D7) » Git » admin

% KotlinGallery 2022/8/18 20:50

4. Run the following commands to go to the KotlinGallery folder and verify the

current Git repository branch structure:
cd KotlinGallery
git branch -a

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

CodeArts Repo
User Guide 5 Migrating Code and Syncing a Repository

§ cd KotlinGallery/

5/git branch -a

As shown in the preceding figure, all directory structures in the SVN are
successfully migrated in the form of Git branches.

Step 3 Correct local branches.

Therefore, before uploading tags to CodeArts Repo, adjust the local branches to
comply with the Git usage specifications.

1. Go to the local Git repository and run the following commands on the Git

Bash client to change the tags branch to appropriate Git tags:
cp -Rf .git/refs/remotes/origin/tags/* .git/refs/tags/

rm -Rf .git/refs/remotes/origin/tags

git branch -a

git tag

ice/ Gt fadmin/KotTinGa

2. Run the following commands to change the remaining indexes under refs/

remotes to local branches:

cp -Rf .git/refs/remotes/origin/* .git/refs/heads/
rm -Rf .git/refs/remotes/origin

git branch -a

git tag

t/admin/Kot

i git branch -a

rl.1_hotfix
trunk

fGit/admin

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

CodeArts Repo
User Guide 5 Migrating Code and Syncing a Repository

3. Run the following commands to merge the trunk branch into the master

branch and delete the trunk branch:
git merge trunk

git branch -d trunk

git branch -a

git tag

§ git merge trunk
Already up to date.

§ git branch -a

ril.1_hotfix

§ git tag
rl.0
ri.1

Step 4 Upload the local code repository to CodeArts Repo.

1. Set the SSH key of the code repo. For details, see Configuring the SSH Key.

2. Go to the CodeArts Repo homepage, click New Repository, and select an
existing project from the Project drop-down list box or create a project.

3. Set Repository Type to Common, enter related parameters, deselect
Generate README and set .gitignore Programming Language to create a
code repository. The homepage of the code repository is displayed.

4. Choose Clone/Download > Clone with HTTPS in the upper right corner and
copy the HTTPS address.

5. Run the following command to associate the local code repo with CodeArts
Repo and push the master branch to the code repo of CodeArts Repo: When
running commands, enter the HTTPS account and password of CodeArts
Repo.
git remote add origin HTTPS address of the new code repo
git push --set-upstream origin master
After the push is successful, go to the code repo homepage and choose Code
> Branches to view the master branch in the current code repo.

6. Run the following command to push other local branches to CodeArts Repo:
git push origin --all
After the push is successful, go to the code repo homepage and choose Code
> Branches. The r1.1_hotfix branch is added to the code repo.

7. Run the following command to push tags from the local host to CodeArts
Repo:
git push origin --tags
After the push is successful, go to the code repo homepage and select the
code > Tags. The r1.0 and r1.1 tags exist in the code repo.

--—-End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

CodeArts Repo
User Guide 5 Migrating Code and Syncing a Repository

5.5 Syncing Repo Settings
Syncing Repo Settings

Table 5-4 Parameters for syncing repo settings

Parameter Description

Branch Mandatory. The options are as follows:

e Default branch. The master branch
automatically created when a code
repo is created, for example, the
master branch.

e All branches. All branches in the
code repo, including the default
branch and other custom branches.

Schedule Optional.

NOTICE
If you select this option, the imported
image repository cannot commit code and
can only be synced from the source
repository periodically. The code is
automatically refreshed every 24 hours.
The refreshed content is the content of the
source repository 24 hours ago.

5.6 Verifying the Import Permission

CodeArts Repo supports two permission verification modes: service endpoint
verification and username and password authorization.

e Verifying permissions through service endpoints
Step 1 Link name Mandatory. Enter a name with a maximum of 256 characters.

Step 2 Git repository URL Mandatory enter the URL of the source repository to be
imported.

Step 3 Username. This parameter is mandatory when the source repository is private.
Username for cloning HTTPS code, for example, GitHub login name.

Step 4 Password or access token. This parameter is mandatory when the source
repository is private. Password or access token for cloning HTTPS code, for
example, the login password of GitHub or the access token created in GitHub. For
details about how to obtain the value of this parameter, see Obtaining an Access
Token from GitHub.

--—-End

e Verifying permissions through username and password

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

CodeArts Repo
User Guide 5 Migrating Code and Syncing a Repository

You can also select By username and password. For details about how to set
Username, see setting username. For details about how to set Password or
access token, see setting password or access token.

5.7 Obtaining an Access Token

Obtaining an Access Token from GitHub

Step 1 Log in to GitHub, click the avatar in the upper right corner, and choose Settings
> Developer settings.

Step 2 Choose Personal access tokens > Personal access tokens (classic) > Generate
new token (classic) and enter key information, as shown in the following figure.

Figure 5-1 Enter key information about the new token.

Note

Test
What's this token for?
Expiration

No expiration

GitHub strongly recommends that you set an expiration date for your token to help keep your information secure.

Select scopes

Scopes define the access for personal tokens.

repo
repo:status
repo_deployment
public_repo

repoiinvite

security_events

Step 3 Enter the necessary information to create a token. The new token page is
displayed. Copy and save the token for it is temporary.

--—-End

5.8 Entering Basic Information for a Repository

Table 5-5 Entering basic information for a repository

Parameter Description

Path Optional. The default value is /,
indicating that the repository does not
belong to any repo group path. You
can also select an existing repo group
path from the drop-down list.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

https://github.com/join

CodeArts Repo
User Guide

5 Migrating Code and Syncing a Repository

Parameter

Description

Repository Name

Mandatory. Name of the repo to be
imported. Start with a letter, digit, or
underscore (_), and use letters, digits,
hyphens (-), underscores (_), and
periods (.). Do not end with .git, .atom,
or periods (.).

Description

Optional. Add a description for the
repo. The description can contain a
maximum of 2,000 characters.

Initial Settings

Optional. If you have enabled
CodeArts Check, you are advised to
select this option. After the repository
is created, you can view the check task
of the repository in the CodeArts
Check task list.

Visibility

Optional. Indicates the visible scope of
the source repo. The options are as
follows:

e Public The value can be For project
members, For tenant members, or
For all guests.

e Private: Only members of this
repository can access it and commit
code.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

CodeArts Repo
User Guide 6 Creating a Repository

Creating a Repository

6.1 Creating Repos in Different Scenarios

CodeArts Repo supports the following methods of creating a repository:

e Create a custom repository.
e Create a repository using a template.
e Fork a repository.

You can create a repository as needed.

6.2 Creating a Repository

Step 1 Go to the CodeArts Repo homepage, click New Repository, and select an existing
project from the Project drop-down list box or create a project.

Step 2 Select Common and set parameters based on the following table.

Table 6-1 Parameters for creating a repo

Parameter Description

Repository Name Mandatory. Start with a letter, digit, or
underscore (_). You can use letters,
digits, hyphens (-), underscores (_),
and periods (.). Do not end

with .git, .atom, or periods (.).

Description Optional. The value contains a
maximum of 2000 characters.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

CodeArts Repo
User Guide 6 Creating a Repository

Parameter Description

.gitignore Programming Language Optional. It is recommended that you
fill in this parameter and select the
programming language for your code
repository from the dropdown list. This
can effectively prevent unnecessary
files from being tracked, thus keeping
your repo clean and maintainable.

Initial Settings Optional. The options are as follows:

e Generate README It is
recommended that you select this
option. After the file is generated,
you can edit the README file to
include information such as the
project's architecture and
compilation purpose, which will
help others quickly understand the
repo.

o Automatically create Check task
(free of charge) It is recommended
that you select this option. After a
code repository is created, you can
view the check task of the repo in
the CodeArts Check task list.

Visibility Optional. You can select either of the
following options as need:

e Private: Only repository members
can access and commit code.

e Public The value can be For project
members, For tenant members, or
For all guests.

NOTE
Repos can be set to Private or Public.
Go to the details page of a code repo,
choose Settings > General Settings >
Repository Information, and modify
the visibility for the repo.

Open-Source License This parameter is mandatory when
Visibility is set to Public. Select an
existing license from the drop-down
list.

--—-End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

CodeArts Repo
User Guide 6 Creating a Repository

6.3 Creating a Repository Using a Template

Step 1 Go to the CodeArts Repo homepage, click New Repository, and select an existing
project from the Project drop-down list box or create a project.

Step 2 Select Template. You can select CodeArts Templates or Custom Templates. You
can set the official template as your custom template in the repo settings. After
selecting a template, set parameters based on the table.

--—-End

6.4 Forking a Repository

Application Scenarios

The fork function can be used in large-scale projects with multiple sub-projects.
You can fork a repository (an image) based on a repository and merge the CRs in
the image to the source repository. When there is no merge, the modification of
both the image repository and source repository will not affect each other.

As shown in the following figure, the complex development process occurs only in
the image repository and does not affect the project version repo (source repo).
Only the confirmed new features can be merged back to the project version repo.
Therefore, fork is a team collaboration mode.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

CodeArts Repo
User Guide

6 Creating a Repository

Project version repository
(source)

Fork Merge request

Project maintainer

Sul:u version & feature repositories
{image repositories)

Git push
Git clone
Git pull
Project participant Project participant Project participant

Differences Between Forking a Repository and Importing an External

Repository

Both forking or importing a repo is a process of replication. The main difference
lies in the association between the source repository and the copied repository.
The details are as follows:

e Fork
- Forks are used to copy repositories on CodeArts Repo.

- A fork generates a repository copy based on the current version of the
source repository. You can apply for merging changes made on the fork
to the source repository (cross-repository branch merge), but you cannot

pull updates from the resource repository to the fork.

e Import

- You can import repositories of other version management platforms
(mainly Git- and SVN-based hosting platforms) or your own repository to

CodeArts Repo.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

CodeArts Repo
User Guide 6 Creating a Repository

- Animport also generates a repository copy based on the current version
of the source repository. The difference is that you can pull the default
branch of the source repository to the repository copy at any time to
obtain the latest version, but you cannot apply for merging changes
made on the repository copy to the source repository.

Forking a Repository

Step 1 Access the repository list page.
Step 2 Click a repository name to go to the target repository.

Step 3 Click Fork in the upper right corner of the page. In the displayed Fork Repository
dialog box, select a target project, enter a repository name, and decide whether to
select Synchronize commit rules of the source repository.

Status: ® @3 Create Build Task @ IDE Online Unfoliow 1 ¥ Fok O & Clone / Download

B Associated Work Items 1 Repository Statistics i Activities & Members £t settings

Comparison

-G

2]

5 | ForkRepository

= Proje

IE.ma

nr Allow project members to access the repository
Synchronize commit rules of the source repository

Cancel

Step 4 Click OK to fork the repository.
----End

Viewing the List of Forked Repositories

Step 1 Access the repository list page.
Step 2 Click the source repository name.

Step 3 Click Fork in the upper right corner of the page to view the list of forked
repositories, as shown in the following figure.

You can click the name of a forked repository to access the repository.

o repo OCracounTak Grolows 0 Yok

= Reposiory ID: 2165461

B Home «>Code §3Merge Requests 0 @G Reviews [Associated Work Items 73] Repository Statistics = Activities 2 Members

124.36 MB 1 1 0 1 0MB

Follow Fork Merge Requests ByLastUpdated Forktime

Apr 11, 2023 Apr 11,2023
0 0 10:04:11 1004:11 Languages
GMT+08:00 GMT+08:00

--—-End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

CodeArts Repo
User Guide

6 Creating a Repository

Merging Changes of a Fork to the Source Repository

Step 1 Access the repository list page.

Step 2 Click the name of the forked repository.

Step 3 Click Create MR.

Step 4 Click New. The Create Merge Request page is displayed.

Source Branch is the one that requests merging.

Target Branch is the one that merges content.

Create Merge Request

Select two different branches for update or creation

Source branch

Target Branch

n @ | undefinedirepot

¥ master

Step 5 Click OK. The page for creating a merge request is displayed. The subsequent
operation process is the same as that of creating a merge request in the
repository. For details, refer to the process of creating a merge request.

--—-End

(11 NOTE

A cross-repository MR belongs to the source repository and can be viewed only on the
Merge Requests tab of the source repository. Therefore, reviewers, scorers, approvers, and
mergers must be members of the source repository.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

31

CodeArts Repo
User Guide 7 Viewing Activities

Viewing Activities

Access a repository and click the Activities tab page to view all activities of the
current repository.

e All: This tab displays all operation records of the repository.

e Push: displays all push operation records of the repository, such as code push
and branch creation and deletion.

e Merge Request: displays the operation records of all merge requests in the
repository. You can click the sequence number of a merge request to view
details, such as creating, closing, re-opening, and merging a merge request.

e Review: This tab displays all review comments of the repository. You can click
the commit nID to view details such as adding or deleting comments.

e Member: displays the management records of all members in the repository,
for example, adding or removing members and editing member permissions.

(11 NOTE

e The displayed information includes the operator, operation content, and operation time.

e You can specify search criteria, such as the time range and operator, to filter and query
data.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

CodeArts Repo
User Guide

8 Viewing Repository Statistics

Viewing Repository Statistics

On the Repository Statistics tab page in the repository details, you can view the
following repository statistics:

e Repository summary: Displays the Git repository capacity, LFS capacity, and
the number of branches, tags, repository members, and commits. You can
select a branch, and the statistical scope of commit trend, contributors, and
commit overview will be changed, but the repository summary will not be
affected.

e Languages: displays the distribution of each language in the current branch of
the repository.

e Commit trend: displays the commit distribution of a branch in the repository.

e Contributors: collects statistics on the contribution of code committers in a
branch (number of commits and number of code lines).

e Commit overview: collects statistics on code commits by different dimensions
(weekly, daily, and hourly).

(11 NOTE

e Repository members can trigger statistics collection by contributor and language.

e Due to resource restrictions, statistics can be collected for each repository ten times a
day.

e Each user can collect statistics for 1000 times a day.

e After the statistics are complete, the number of added and deleted code lines of each
user is displayed before the deadline ("+" indicates the added code lines and "-"
indicates the deleted code lines).

e Commits (an operation that combines two or more historical development records) of
the merge node are not counted.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

CodeArts Repo
User Guide

8 Viewing Repository Statistics

BHome Code [iMergeRequests 1 (RReviews B Associated Worktems ¢ Reposiory Statistics = Actvtes & Members £ Settings

Repo Used LFS Useo _ Benctes Tags Hembers Commits
a = o])
012w Ows T2 1 T2

Branch: master + Last Counted My 05 2029 164621 GMTH06.00) O

Languages

o Java 100%

Commit Trend

Contributors (]

[1.

Comit Overview Commit Actvity Doy Wesx Hor] 22307
ot Comes -

¥ 2

Daiy Conmits Contbutors

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

CodeArts Repo
User Guide

9 Configuring Repository Settings

Configuring Repository Settings

Configuring Repo-level Settings

If Force inherit is selected in the project-level Repo Settings, Repo Settings is not

supported for specific repos.

If the project-level configuration is not inherited, set parameters by referring to

the following table.

Table 9-1 Parameters for repo-level settings

Parameter

Description

Default Branch

Optional. The master branch is set as
the default branch when the code repo
is created.

Whitelist for creating branches

Optional. By default, this parameter is
not selected. If this parameter is
selected, the whitelist for developers to
create branches is enabled. Only
developers can be added to the
whitelist. Non-developers will not be
displayed and will not take effect even
after configuration.

Do not fork a repository

Optional. Once selected, no one can
fork the repo in the project.

Pre-merge

Optional. Once this is selected, the
server automatically generates the
pre-merge code of the MR. Compared
with running commands on the client,
this operation is more efficient and
simple, and the build result is more
accurate. This option applies to
scenarios that have strict requirements
on real-time build.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

CodeArts Repo

User Guide 9 Configuring Repository Settings
Parameter Description
Branch name rule Optional. All branch names must

match the regular expression with
max. 500 characters. If this field is left
blank, any branch name is allowed.
The rules must meet the following tag
naming rules:

e Max. 500 characters.

e Do not start with refs/heads/refs/
remotes/ or end with . / .lock.
Spaces and the following characters
are not supported:. [\ <~A:?2 ()"'"

Tag Name Rule Optional. All tag names must match
the regular expression specified by this
parameter. If this field is left blank, any
tag name is allowed. The basic tag
naming rules must be met.

e Max. 500 characters.

e Do not start with refs/heads/refs/
remotes/ or end with . / .lock.
Spaces and the following characters
are not supported:. [\ <~A:?2 ()"'"

Configuring a Submodule

A submodaule is a Git tool used to manage shared repositories. It allows you to
embed a shared repository as a subdirectory in a repository. You can isolate and
reuse repositories, and pull latest changes from or push commits to shared
repositories.

You may want to use project B (a third-party repo or a repo developed by yourself
for multiple parent projects) in project A, and use them as two separate projects.
Submodules allow you to use a Git repo as a subdirectory of another Git repo. This
means that you can clone another repo into your own project while keeping
commits independent.

The submodules are recorded in a file named .gitmodules, which records the
information about the submodules.

[submodule "module_name"] # Submodule name

path = file_path # File path of the submodule in the current repository (parent repository).
url = repo_url # Remote repository IP address of the submodule (sub-repository).

In this case, the source code in the file_path directory is obtained from repo_url.

Using the Console
e Creating a submodule

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

CodeArts Repo
User Guide 9 Configuring Repository Settings

- Entry 1:
You can add a submodule to a folder in the repository file list.

Click * and select Create Submodule, as shown in the following figure.

[® Home <> Code £1 Merge Requests 1 & Reviews B Associal

123.89 MB Files -0 1 Commits }° 2 Branches () 0Tags T, Comparison

master v | [Repo_Test00 / + Create
Q :

@ Repo_Test00 (2 History

B images El

i kompose B Create File

= " se

I resu (7 Create Directory

B vote 2 Create Submodule

B worker £ Upload File

j LICENSE [Delete Directory

M README.md N
(3 LICENSE

15 docker-compose-standalone...
Mi README.md

1Y) docker-compose.yml

- Entry 2
You can create a submodule on the Code tab page
+ Create ~
Click and select Create Submodule, as shown in the

following figure.

= Home 11 Merge Requests 1 @ Reviews @ Associated Work Items

123.89 MB Files - 1 Commits 2—5’ 2 Branches §> 0 Tags m Comparison

master v D Repo_Test00 / |'+ Create = |
Q
i Repo_Tes [Create File
B images
= g ___ [*; Create Directory
W images
mk
I Kompose I[:,' Create Submodule
W result - by Upload File
i vote m result
- Entry 3:

You can create a submodule in the repository settings.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

CodeArts Repo
User Guide

9 Configuring Repository Settings

Choose Settings > Repository Management > Submodules > Create
Submodule.

- Remarks:

You can use one of the preceding methods to create a submodule.

Configure the following parameters and click OK.

Table 9-2 Parameters of creating a submodule

Parame
ter

Description

Submod
ule
Repo
Path

Select a repository as the submodule.

Submod
ule
Repo
Branch

Select the target branch of the submodule to be
synchronized to the parent repository.

Submod
ule File
Path

Path of the submodule file in the repository. Use / to
separate levels.

Details

Remarks for creating a submodule. You can find the
operation in the file history. The value contains a maximum
of 2000 characters.

(1 NOTE

After the creation is complete, you can find the submodule (child repository) in
the corresponding directory of the repository file list. The icon on the left of the

corresponding file is - .

e Viewing, synchronizing, and deleting a submodule

Choose Settings > Repository Management > Submodules. On the
displayed page, repository administrators can view, synchronize, and delete

submodules.

e Synchronizing deploy keys

If a submodule is added on the Git client, the repository administrator needs
to synchronize the deploy key of the parent repository to the submodule on
the Settings > Repository Management > Submodules page. In this way,
the submodule can also be pulled during the build of the parent repository.

Using the Git Client

Step 1 Add a submodule.

git submodule add <repo> [<dir>] [-b <branch>] [<path>]

Example:

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

38

CodeArts Repo

User Guide 9 Configuring Repository Settings

git submodule add git@***.***.com:****/WEB-INF.git

Step 2 Pulling a repository that contains a submodule
git clone <repo> [<dir>] --recursive
Example:
git clone git@***.***.com:****/WEB-INF.git --recursive

Step 3 Update a submodule based on the latest remote commit
git submodule update --remote

Step 4 Push updates to a submodule.
git push --recurse-submodules=check

Step 5 Delete a submodule.

1. Delete the entry of a submodule from the .gitsubmodaule file.
2. Delete the entry of a submodule from the .git/config file.

3. Run the following command to delete the folder of the submodule.
git rm --cached {submodule_path} # Replace {submodule _path} with your submodule path.

(10 NOTE

Omit the slash (/) at the end of the path.

For example, if your submodule is stored in the src/main/webapp/WEB-INF/
directory, run the following command:

git rm --cached src/main/webapp/WEB-INF

----End

9.1 Configuring Repository Policies

9.1.1 Configuring Protected Branch Rules

Configuring Project-Level Protected Branch Rules

Step 1

CodeArts Repo makes code branches more secure by preventing anyone other
than the administrator from committing code, preventing anyone from forcibly
committing code, or from deleting the branch. You can set this branch to be
protected. The procedure is as follows: On the CodeArts Repo homepage, go to
the project homepage, choose Settings > Policy Settings > Protected Branch,

click Create Protected Branch, and set parameters as follows.

Enter a branch name. This parameter is mandatory. Enter a complete branch
name or a branch name with wildcard characters. If a branch contains a single

slash (/), the branch cannot be matched using the wildcard * due to the fnmatch

syntax rule.

Step 2 You can set the push or merge permission for the administrator/project manager,
committer, and developer. These two permissions cannot be granted at the same
time because the protected branch cannot be forcibly pushed or merged into the

code. You can create, edit, and delete protected branches in batches.

--—-End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

39

CodeArts Repo
User Guide

9 Configuring Repository Settings

If you want all repo groups and repo in this project to use the preceding settings,

select Force inherit.

9.1.2 Configuring Protected Branch Rules

Setting Repo-Level Protected Tag Rules

Go to the repo homepage, choose Settings > Policy Settings > Protected Tags,
click Create Protected Tag, and set parameters by referring to the following table.

Table 9-3 Parameters for creating a protected tag

Parameter

Description

Tags

Mandatory. Enter a complete tag or a
tag with a wildcard as required.

Only one branch can be added at a
time. Batch adding is not supported.
The value must start with refs/heads/
and end with *. Special characters are
not allowed in other positions.

Allowed to Create

Mandatory. Roles allowed to create
protected tags. You can select a role
with permission to create protected
tags from the drop-down list box.

9.1.3 Configuring Code Commit Rules

Configuring Repo-Level Commit Rules

CodeArts Repo allows you to create verification and restriction rules for code
commits to ensure code quality. You can select Inherit from project to

automatically inherit and use the project s
modified.

ettings. The settings cannot be

You can also access the CodeArts Repo homepage. Choose Settings > Policy
Settings > Commiit rules, and click Create Commit Rule. For details about the

parameters, see Table 16-8.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

CodeArts Repo
User Guide

9 Configuring Repository Settings

Table 9-4 Parameters on the Commit Rules page

Parameter Description

Reject non- Only signed-off-by commits are pushed to the repository.
signed-off-by CodeArts Repo signature mode:

commits

When performing online commit in CodeArts Repo, use the

following format to compile and submit information:
commit message # Enter the customized submission information.
This is a blank line.
Signed-off-by: User-defined signature # Enter the user-defined signature after
Signed-off-by:

Git client signature mode:

When running the commit command on the Git client, you
need to add the -s parameter.

git commit -s -m " <your commit message>"

You need to configure the signature and email address on the
client in advance.

Reject commits
not signed by
GPG

Only GPG-signed commits are pushed to the repository.

Configure a GPG key:
git config --global user.signingkey "your GPG private key'

Git client signature mode:

When running the commit command on the Git client, you
need to add the -S parameter.

git commit -S -m " Your commit message"

When running the tag command on the Git client, you need
to add the -s parameter.

git tag -s -m " Your tag message"

You need to configure the signature and email address on the
client in advance.

Tags cannot be
deleted

After this option is selected, tags cannot be deleted on the
page or by running commands on the client.

Prevent Example: id_rsa and id_dsa files.

committing

secrets

Prevent git Indicates whether users can run the git push -f command on
push -f the client to push code.

git push -f indicates that the current local code repository is
pushed to and overwrites the code in CodeArts Repo.

In general cases, you are not advised using this command.

9.1.4 Review Comments

On the repository details page, choose Settings > Policy Settings > Review
Comments. It can standardize the review comments and configure review
comment templates.

The settings take effect only for the repository configured.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

CodeArts Repo
User Guide

9 Configuring Repository Settings

All repository members can view this page. For details about whether a repository

member has repository setting permissions, refer to Permissions.

Setting Review Comments

Step 1 Select Enable review comment types and modules as needed.

Step 2 Configure review comment categories.
e Enable preset comment types

If you select Enable preset comment types, you can directly use the preset

review comment categories.

e Custom types

You can customize review comment categories. Enter a type name and press

Enter to save the settings.

(10 NOTE

Enter a category name and press Enter. The name cannot contain colons (:) and can
contain a maximum of 200 characters. A maximum of 20 category names separated

with commas (,) can be entered and must be unique.

Step 3 Enter a category name in the text box under Comment Modules.

(11 NOTE

Enter a module name and press Enter. The name can contain a maximum of 200
characters. A maximum of 20 category names separated with commas (,) can be entered

and must be unique.

Step 4 Set Mandatory Fields to Verify for Comment Creation/Editing as required.

Step 5 Click Submits.

--—-End

Reviews

Enable comment types and modules
Enable preset comment types

Comment Types:

Realize Design Simulation Coding Style
Memory Regulations Function Performance
Architecture Other

Customize category:

Comment Modules:

Mandatory fields to Verify for Comment Creation/Editing:

Assigned 1o Comment type

Security

Reliability

Comment

module

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

42

CodeArts Repo
User Guide 9 Configuring Repository Settings

9.1.5 MR Evaluation

This function is used to set MR evaluation dimensions. After the dimensions are
set, you can evaluate the dimensions on the MR details page.
Setting MR Evaluation

Step 1 Select Enable MR User-defined Evaluation Dimension Classification. You can
add evaluation dimensions.

Enter a dimension name and press Enter to save the settings. The name can
contain a maximum of 200 characters. A maximum of 20 dimensions can be
created.

(1 NOTE

If Enable MR User-defined Evaluation Dimension Classification is not selected, the
single-dimension MR evaluation is performed.

Step 2 Click Submits.
----End

MR Evaluation

Enable MR User-defined Evaluation Dimension Classification

Evaluation Dimension

Clear architecture Moderate amount of code Complete comments Clear code logic Proper exception handiing

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

CodeArts Repo

User Guide 10 Hierarchical Repository Management

1 0 Hierarchical Repository

Management

10.1 Creating a Repository Group

Overview
A repository group consists of one or more repositories. You can configure and
manage repository rules for repositories or child repository groups in a repository
group, including commit rules and member permissions.
{1 NOTE

A maximum of five levels of repo groups can be created.

+ New Repository ‘ -
In the project or parent organization, click the

icon, and select New Repository Group from the drop-down list box. On the
displayed page, enter basic information according to the following table and click
OK. A maximum of three levels of repository groups can be created.

Creating a Repository Group

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

44

CodeArts Repo
User Guide

10 Hierarchical Repository Management

Table 10-1 Parameters for creating a repository group

Paramet
ers

Ma
nda
tory

Remarks

Responsi
ble
Project

Yes

e The repository group must exist in a project.

e |f your account does not have a project, click Create
Project in the drop-down list box to create a Scrum
project.

NOTE

You can create a project only when you create a repository group
on the CodeArts Repo homepage.

Path

No

The repository group path corresponds to the groupld
parameter of the API for creating a repository. If groupld is
empty, there is no corresponding repository group for the
repository in the project. Select a repository group path as
required. The repository group path range is the root
organization paths of all first-level repository groups and child
repository groups.

Name

Yes

Start with a letter, digit, or underscore (_), and use letters,
digits, hyphens (-), underscores (_), and periods (.). Do not
end with .git, .atom, or periods (.). Max. 256 characters.

Descripti
on

No

Describe your repository group. Max. 2000 characters.

Visibility

Yes

You can choose Private (default) or Public.

e Private
Only repository group members can access. The child
repository groups and repositories in a private repository
group can only be private.

e Public
Read-only for visitors via referral link and hidden from
repo lists and search results. Child repository groups and
repositories in a public repository group can be private or
public.

10.2 Using Repository Groups

10.2.1 Viewing the Repository Group List

You can use either of the following methods to access the repository group list
page of CodeArts Repo:

On the CodeArts homepage, choose Services > Repo. The repositories that you
participated in are displayed by default. Click any menu under Group to go to the
repository group list page.

You can create and configure a repository group.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

CodeArts Repo
User Guide 10 Hierarchical Repository Management

New Repository Grou
° i L - : Click this icon to access the page for creating a

repository group.

° : Click this icon to follow the repository group. You can view the repository
group in followed repository group list.

e =2:Click this icon on the right of a repository group to access the homepage
of child repository groups.

e “"":C(lick this icon next to the parent repository group. The Repositories,
Members, Settings, and New Child Repository Group icons are displayed.

- . Click this icon to access the repository (group) list page.

- ™ Click this icon to access the repository group members page.

- “¥: Click this icon to access the Repository Group Information page on
the Settings tab page.

- L+ : Click this icon to access the page for creating a child repository
group.

On the personal homepage, you can view Followed, Participated, and Created. In
the upper right corner, you can filter repository groups using By Last Created and
By Last Updated.

2, Group
A, Followed
/& Participated
A Created
[=] Task
Il Merge Requests

10.2.2 Viewing Repository Group Details

Click a repository group name in the repository group list to go to its details page.
CodeArts Repo provides various console operations. The details are described in
the following table.

Table 10-2 Description

Function Description

Repository The number of repository groups, repositories, open MRs,

(Groups) and members are displayed. You can also create
repositories and view unlocked ones.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

CodeArts Repo
User Guide 10 Hierarchical Repository Management

Function Description

Members On the repository group member management page,
members can be added and repository group member
roles can be adjusted.

Settings Entry for the repository group settings. All members of the
repository group can view the settings, but only the
project administrator or repository group owner can
modify the settings.

In addition, the repository group details page provides shortcut entries to the
following functions:

= Click this icon next to SSH or HTTPS to obtain the repository address.

: Click this icon to follow the repository group.

«=+: Click this icon under a repository group to view the number of repositories,
access each repository, view and set repository group members, create child
repository groups or repositories, create repositories based on templates, and
import external repositories. Click this icon under a repository to associate work
items, manage members, and delete the repository.

10.2.3 Viewing the Repository Group Homepage

The repository group homepage displays its basic information.

Table 10-3 Parameters

Parameter Description

Child Repository | Number of child repository groups.
Groups

Repositories Number of repositories.

Opening Merge | Number of opening MRs.
Request

Members Number of members in a repository group. Click & to go to
the Members tab page for management.

New Repository | Click & to go to the New Repository page and create a
repository.

All Repositories | Both locked and unlocked repositories included.

10.2.4 Managing Members of a Repository Group

CodeArts Repo allows you to add members or member groups to a repository
group.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

CodeArts Repo
User Guide

10 Hierarchical Repository Management

e All, Groups, Pending, and Add Member are located on the Members tab
page of repository group details.

- Username, User Source, Project Member Role, Repository Group Role,
and Operation of all members in the repository group are displayed in
AlL

- Member Group Name, Number of Members, Description, and
Operation of all member groups in the repository group are displayed in
Groups.

- Pending displays the members to be reviewed in the repository group,
including the Username, Project Member Role, Repository Group Role,
and Operation. A member to be reviewed can be set to Agree or Reject
by a user who has permission to add members.

- You can add members or member groups on the Add Member page.

(11 NOTE

Members in a parent repository group are unconditionally inherited to its child repository
groups or child repositories and cannot be deleted.

When a project role changes, the repository role that is consistent with this role is updated
synchronously. The priority of the member role inherited by the repository group or added
to the member group is subject to the latest update.

As the administrator of this repository, the repository owner has full permissions for the
repository and cannot be removed or edited.

The project administrator has the highest permission in the project and automatically
becomes an administrator in this repository. They have full permissions for this repository
and cannot be deleted or modified.

The repository group creator has all permissions for the repository group and its child
repository groups and repositories. The creator cannot be deleted or modified.

This member is added in a member group and can only be deleted in the group.

This member is from the upper-layer repository group and can only be deleted in that
repository group.

Adding a Member or Member Group to a Repository Group

Step 1

Step 2
Step 3

Step 4

Step 5
Step 6

Go to the CodeArts homepage and click the target project name to access the
project.

Choose Services > Repo.

Find the parent organization of repository group and go to the repository group
homepage.

Click Members and click the icon. The Add Member dialog

box is displayed.
In the Add Member dialog box, click Members, select a target member, Click OK.

In the Add Member dialog box, click Member Groups, select a target member
group from the drop-down list box, and click OK.

--—-End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

CodeArts Repo
User Guide 10 Hierarchical Repository Management

10.3 Configuring Repository Groups

10.3.1 Repository Group Information

To view and modify the repository group information, choose Settings > General
Settings > Repository Group Information on the repository group details page.

The settings take effect only for the repository group configured.

All members in a repository group can view this page, but only the project
administrator and repository group creator have the setting permission.

By default, the repository group name cannot be changed.

Repository group description is used to describe repository group information.

10.3.2 Repository Settings

To configure repository settings, you can choose Settings > Repository
Management > Repository Settings on the repository group details page.

The default branch is selected when you enter the current repository group or
create an MR. Each new repository in a repository group has a default branch -
master, which can be changed at any time.

The settings take effect only for the repository group configured.

All repository members can view this page. For details about whether a repository
member has repository setting permissions, refer to the Permissions page. After
the setting is complete, click Submit.

Table 10-4 Description

Parameter Description

Pre-merge By default, this option is not selected. After this option
is selected, the server automatically generates MR pre-
merging code. Compared with running commands on
the client, this operation is more efficient and simple,
and the build result is more accurate. This option
applies to scenarios that have strict requirements on
real-time build.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

CodeArts Repo
User Guide

10 Hierarchical Repository Management

Parameter

Description

Branch name rule

All branch names must match the regular expression

specified by this parameter. If this parameter is left

empty, any branch name is allowed. The value must

comply with the basic branch naming rules and contain

a maximum of 500 characters. Example:

Afeature-[0-9a-zA-Z]+

e Max. 500 characters.

e The name cannot start with -, refs/heads/, or refs/
remotes/, and cannot contain spaces or special

characters such as [\<~A:2*1()"|. It cannot end
with ./ or .lock.

e The name of a new branch cannot be the same as
that of an existing branch or tag.

Tag name rule

All tag names must match the regular expression
specified by this parameter. If this parameter is left
empty, any tag name is allowed. The tag name must
comply with the basic tag naming rules and contain a
maximum of 500 characters. Example: ATAG*S

e Max. 500 characters.

e The name cannot start with -, refs/heads/, or refs/
remotes/, and cannot contain spaces or special
characters such as [\<~A:?*1()"]. It cannot end
with ./ or .lock.

e The name of a new tag cannot be the same as that
of an existing branch or tag.

(11 NOTE

e Byte: a group of adjacent binary digits. It is an important data unit of computers and is
usually represented by B. 1 B = 8 bits.

e Character: a letter, digit, or another symbol that represents data and information.

Configuring MR Pre-merge

After an MR is created, you can customize the scripts for downloading plug-ins
such as WebHook and CodeArts Pipeline. That is, you can control the downloaded

code content.

e If Pre-merge is selected, the server will generate a hidden branch, indicating
that the MR code has been merged. You can directly download the code that
already exists in the hidden branch.

e If Pre-merge is not selected, you need to perform pre-merge on the client.
That is, download the code of the MR source branch and MR target branch
and perform pre-merge on the build executor.

Commands

The pre-merge commands on the server are as follows:

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

CodeArts Repo
User Guide

10 Hierarchical Repository Management

git init
git remote add origin ${repo_url clone or download URL}
git fetch origin +refs/merge-requests/${repo_MR_iid}/merge:refs/${repo_MR_iid}merge

If this option is not selected, you can perform the pre-merge operation on the
client and create a clean working directory on the local host. The command is as
follows:

git init

git remote add origin ${repo_url clone or download URL}

git fetch origin +refs/heads/${repoTargetBranch}refs/remotes/origin/${repoTargetBranch}

git checkout ${repoTargetBranch}

git fetch origin +refs/merge-requests/${repo_MR_iid}/head:refs/remotes/origin/${repo_MR_jiid}/head

git merge refs/remotes/origin/${repo_MR_iid}/head --no-edit

Advantages

In scenarios that have high requirements on real-time build, for example, one MR
may start the build of dozens or hundreds of servers, and the pre-merging result
generated by the local or client may be inconsistent with that generated by the
server. As a result, the build code cannot be obtained accurately and the build
result is inaccurate. Pre-merging on the server can solve this problem in real time.
In addition, the script building command is simpler, and developers or CIEs can
better use it.

10.3.3 Risky Operations

On the repository group details page, choose Settings > Risky Operations.

All members of a repository group can view this page, but only the project
administrator and repository group owner can modify it.

Currently, the following operations are available:

e Deleting Repository Group: This will delete all its child repository groups and
resources. Caution! The deleted repository group cannot be restored.

e Rename Repository Group: This will invalidate the original repository group
path and repository path and may cause unexpected situations.

(11 NOTE

e (Caution! Changing the repository group name will invalidate the original clone
path of this repository group. Check and update related configurations.

e If a pipeline is configured for a repository in a repository group, the pipeline cannot
be triggered after the repository group name is changed. In this case, you need to
update the pipeline configuration (execution plan and pipeline source). For details,
see > "Configuring a Pipeline".

e After renaming a repository group, you need to check and modify related
configurations for CodeArts Build, CodeArts Check, CodeArts Deploy, and CodeArts
IDE Online.

10.3.4 Permission Management

Permissions is on the Settings tab page of repository group details.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

CodeArts Repo
User Guide 10 Hierarchical Repository Management

Permissions

Can be configured only by the project administrator and the owners of repository groups at each layer.
Repository Group ~ Repository Code Member Branch Tag 1R @D Froject permission configuration

users

You can configure permissions for each role according to the following table.

(10 NOTE

The repository group permission matrix can be modified only by the project administrator
and the owners of repository groups at each layer.

If a repository member is inherited from a repository group, the member uses the role of
the repository group by default. After changing the role of the repository member in the

repository, click — in the Operation column of the repository member on the Member
List tab page. The permission of the role is changed to that of the repository group role.

Table 10-5 Permissions of the repository group roles

Role/ Per | Proje | Com | Devel | Syste | Test Viewer [Customize
Functi | miss | ct mitt | oper | m Mana d Role
on ion Man | er Engi | ger,
ager neer | Tester,
Partici
pant,
Opera
tion
Mana
ger,
and
Produc
t
Mana
ger
Reposit | Crea | B B B B C D C
ory te
Group
Dele | B D D D D D @
te
Setti | B D D D D D C
ng
Reposit | Crea | B B B B C D C
ory te
Fork | B B B B C D C
Dele | B D D D D D C
te

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

CodeArts Repo

User Guide 10 Hierarchical Repository Management
Role/ Per | Proje | Com | Devel | Syste | Test Viewer [Customize
Functi | miss | ct mitt | oper | m Mana d Role
on ion Man | er Engi | ger,

ager neer | Tester,
Partici
pant,
Opera
tion
Mana
ger,
and
Produc
t
Mana
ger
Setti | B D D D D D @
ng
Code Com | B A A A C D @
mit
Dow | B A A A C D @
nloa
d
Memb [Add |B D D D D D C
er
Edit | B D D D D D C
Dele | B D D D D D C
te
Branch | Crea | B B B B C D @
te
Dele | B B B B C D C
te
Tag Crea | B B B B C D C
te
Dele | B @ @ @ C D @
te
MR Crea | B B B B C D C
te
Edit | B B @ @ D D @
Com | B B B B C C C
men
t
Revi | B B B B D C @
ew

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

CodeArts Repo

User Guide 10 Hierarchical Repository Management
Role/ Per | Proje | Com | Devel | Syste | Test Viewer [Customize
Functi | miss | ct mitt | oper | m Mana d Role
on ion Man | er Engi | ger,

ager neer | Tester,
Partici
pant,
Opera
tion
Mana
ger,
and
Produc
t
Mana
ger
Appr | B B C C D D C
ove
Mer | B B @ @ D D @
ge
Clos | B B @ @ D D @
e
Re- B B @ @ D D @
open
L] NOTE

e A:indicates that the role has the permission by default and the permission cannot be
removed.

e B:indicates that the role has the permission by default and the permission can be
removed.

e C: indicates that the role can have the permission assigned.
e D:indicates that the role cannot have the permission assigned.

Permissions is on the Settings tab page of repository details.

You can configure permissions for each role according to the following table.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

CodeArts Repo
User Guide

10 Hierarchical Repository Management

Table 10-6 Permissions of the repository roles

Role/ | Per | Proje | Com | Devel | Syste | Test Viewer | Customize
Functi | miss | ct mitt | oper | m Mana d Role
on ion Man | er Engi | ger,
ager neer | Tester,
Partici
pant,
Opera
tion
Mana
ger,
and
Produc
t
Mana
ger
Reposit | Fork | B B B B C D @
ory
Dele | B D D D D D C
te
Setti | B D D D D D @
ng
Code Com | B A A A C D C
mit
Dow | B A A A C D C
nloa
d
Memb | Add |B D D D D D @
er
Edit | B D D D D D @
Dele | B D D D D D @
te
Branch | Crea | B B B B C D C
te
Dele | B B B B C D @
te
Tag Crea | B B B B C D C
te
Dele | B @ @ @ C D C
te
MR Crea | B B B B C D @
te
Edit | B B C @ D D C
Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

CodeArts Repo

User Guide 10 Hierarchical Repository Management
Role/ Per | Proje | Com | Devel | Syste | Test Viewer [Customize
Functi | miss | ct mitt | oper | m Mana d Role
on ion Man | er Engi | ger,

ager neer | Tester,
Partici
pant,
Opera
tion
Mana
ger,
and
Produc
t
Mana
ger
Com | B B B B C C C
men
t
Revi | B B B B D C C
ew
Appr | B B C C D D C
ove
Mer | B B C C D D C
ge
Clos | B B @ @ D D @
e
Re- B B C C D D C
open
{0 NOTE

e A:indicates that the role has the permission by default and the permission cannot be
removed.

e B:indicates that the role has the permission by default and the permission can be
removed.

e (C:indicates that the role can have the permission assigned.

e D: indicates that the role cannot have the permission assigned.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

56

CodeArts Repo
User Guide 11 Configuring a Repository

1 1 Configuring a Repository

11.1 Configuring Repository Settings

Configuring Synchronization Between Repos

CodeArts Repo allows you to synch the current repo settings to other repos across
projects but not regions.

This function is used for a repository forked based on the repository because the
settings are not automatically copied during forking.

If you have enabled Inherit from project, you cannot synch settings.

Only members with the Set permission can perform this operation. Members in
the repo can view this page.

Go to the repo homepage and choose Settings > Repo Management > Sync
Settings >. Click Add Repository. In the dialog box that is displayed, select the
target repository.

(10 NOTE

e Ensure that the network connection is normal before synchronizing a repository.
e CodeArts Repo supports accessing other public platforms' to code repos.

° For private repository platforms on the intranet, ensure that the network
connection between CodeArts Repo and your repository is normal.

e Common Failure Causes
1. Failed to sync Commit Rules: No commit rules are set for the source repository.

2. Failed to sync Protected Branches: The branch names of the source repository and
target repository are different.

11.2 Viewing the Repository List

You can view your repo list in three ways: Favorited, Joined, and Created. You can
access the repository list in the following ways:

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

CodeArts Repo
User Guide

11 Configuring a Repository

e On the CodeArts homepage, click Services > Repo under the navigation bar.
The repository list page of CodeArts Repo is displayed, showing all your code
repositories.

e On the CodeArts homepage, click a project, and click Code > Repo in the
navigation pane on the left to enter the repo list page.

e If you have subscribed to the new CodeArts package or purchased any
CodeArts Repo package, go to the CodeArts homepage, click your avatar, and
choose All Account Settings > Repo > Resource Usage. On the Repo List tab
page, click a project to go to the repo list page, as shown in the following
figure. On the CodeArts Repo homepage, click the storage usage and repos in
the upper left corner to go to the Resource Usage page directly.

Figure 11-1 Resource Usage

Resource Usage

100 persons

Single File to Push Single File to Push with LFS LFS Used Used (inc

30a8 300ms 1cB 7.6c8 165.3/700 8

Repository List @

Q

Created
Nomal Oct 16, 2023 16:20:59 GMT+08:00

Nomal Oct 16, 2023 16:18:03 GMT+08:00

Oct 16, 2023 16:00:58 GMT+08:00

Oct 16, 2023 15:38:26 GMT+08:00

Oct 16, 2023 15:38:22 GMT+08:00

Oct 16, 2023 15:38:15 GMT+08:00

Choose Repos > Joined to view all repositories that you have participated in. If

you select

A

" in the row where a repo is located, you will favorite the repo. You

can choose Repos > Favorited to view the repo that you have favorited. To view
the repo you created, choose Repos > Created.

11.3 Viewing Repository Details

In the repository list, click a repository name to go to the repository details page.
CodeArts Repo provides abundant operations.

Table 11-1 Description

Page

Function Description

Reposito
ry
Homepa

ge

Displays the repository capacity, number of commits, branches, tags,
and members, LFS usage, creation time, creator, visible scope,
repository status, README file, language, and percentage of each
language.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

CodeArts Repo
User Guide

11 Configuring a Repository

Page

Function Description

Code

e File list: You can create files, directories, and submodules, upload
files, modify files and blame, and view commit history.

e Submit: You can view commit records and repository network
diagrams.

e Branch: Branches can be managed on the console.
e Tag: Tags can be managed on the console.

e Comparison: You can view code changes between branches or
between tag versions by comparison.

Merge
Requests

Merge requests of branches can be managed on the console.

Reviews

You can view the review records of MRs and commits.

Associate
d Work
Items

List of associated work items. You can associate CodeArts Req work
items with the repository code to improve efficiency.

Repositor

y
Statistics

Visualized charts of repository commits, such as code contribution.

Activities

You can view the dynamic information about the repository.

Members

Member management is supported. The details are as follows:

e All, Groups, Pending, and Add Member are located on the
Members tab page of repository details.

- Username, User Source, Project Member Role, and
Repository Member Role of all members in the repository are
displayed in All

- Member Group Name, Number of members, Description,
and Operation of all member groups in the repository are
displayed in Groups.

- Pending displays the members to be reviewed in the
repository, including their Username, Alias, Enterprise User,
Project Member Role, Repository Group Role, and
Operation. A user with permission to add members can set a
member to be reviewed as either Agree or Reject.

- You can add members or member groups to a repository on
the Add Member page.

Settings

Entry for setting the repository. All repository members can view this
page. For details about whether a repository member has repository
setting permissions, refer to the Permissions page.

In addition, the repository details page provides quick entries to the following

functions:

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

CodeArts Repo
User Guide 11 Configuring a Repository

e Create Build Task: Create a build task.

e Follow: Click to follow the repository. The followed repositories are pinned on
top.

e Fork: displays the number of forks of the repository. Click this button, the
Fork Repository page is displayed.

e Clone/Download: You can obtain the SSH address and HTTPS address of a
repository or directly download the code package.

(11 NOTE

e The following figures show the adaptation function of CodeArts Repo. When the length
of the repository page is greater than the window length, the repository tab page is
moved to the top after you scroll down. The position in the red box in the following
figure is collapsed so you can view repository information easily. After you scroll up, the
page layout is restored.

Vomenage 1 1esL0317 1 Repo / repo2 1 Reposiory Siaisics
- Tepo2 & Create Build Task Follows 0 A4S % Cione / Download

D: 2165265

BHome «>Code I3MergeRequests 0 (3 Reviews ® Associate dWork ltems ¢ Repository Statistics ‘= Activities & Members

0.11 ue Ome 1 0 4 1
e Rules for displaying the code check status:

° If you have the code check permission, the code check status is displayed next to
the repository name.

e If you do not have the code check permission, no code check status is displayed
next to the repository name.

e Rules for displaying the build status:
° If you do not have the build permission,
only the Create Build Task button is displayed on the top of the repository page.
e If you have the build permission,

and no build task is set, the Create Build Task button is displayed on the top of
the repository page.

If a build task is set, the following statuses are displayed on the top of the
repository page: Build task running , Building, Build failed, and Build successful.

11.4 Viewing Repository Homepage

The Home tab page displays the basic information about repo, as shown in the
following figure.

B Home <> Code I} MergeRequests 1 (3 Reviews [Associated Workltems 77 Repository Statistics = Activities & Members & Settings
0.04 MB 2 2 0 1 oMB © Info
Files o Commits ¥ Branches © Tags & Members = LFS Usage

Created: Aug 31, 2024 09:55:53 GMT+08:00
Creator

Visibility: Private

No deseription
Git Status-® Normal

README.md
1) Readme
README md

r

(@) Languages

® other 100%

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

CodeArts Repo
User Guide 11 Configuring a Repository

Table 11-2 Parameter description

Parameter Description

Files Capacity of the current repository The preceding figure
shows that 0.04 MB capacity has been used by the current
repo.
NOTE

e The capacity of a single repository cannot exceed 2 GB (including
LFS usage). If the capacity exceeds 2 GB, the repository cannot
be used properly and cannot be expanded.

e When the capacity of a repository exceeds the upper limit, the
repository is frozen. In this case, you are advised to delete the
repository, control the capacity locally, and push the repository
again.

Commits Number of commits in the default branch of the repo. You
can click the number or icon to go to the Commits page
under the Code tab page and view the commit details. This
example indicates that there are two commits.

Branches Displays the number of branches in the current repository.
You can click the branch icon or the number above it to go
to the Code tab page and manage Branches.

Tags Displays the number of tags in the current repository. You
can click the icon to go to the Code tab page and manage
tags.

Members Displays the number of members in the current repository.

You can click the icon to go to the Members tab page and
manage members.

LFS Usage Collect statistics on the LFS usage of the current repository.
Repository The description entered during repository creation.
description

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

CodeArts Repo
User Guide

11 Configuring a Repository

Parameter

Description

README.md

You can preview README files. If no Readme file exists in
the repository, click Create Readme to create one.

Name: The default file name is README.md.
Format: The options are as follows:
e text: indicates text data or a text string.

e base64: Base64 is a method of representing binary data
based on 64 printable characters.

Content: The value can be customized.
e If the format is text, enter common text.

e |[f the format is base64, enter Base64-encoded content
that can pass the encoding verification.

Commit Message: Enter the commit information about the
file or folder, which can be customized.

Create File

baseb4

Characters left: 10485753 more characters
* Commit Message
Add readme

Characters left: 1990 more characters

Cancel

Info

Displays the creation time, creator, visible scope, and status
of a repository.

Readme

Displays the README file of the current repository. You can
click the file name to go to the Code tab page and view the
file content.

Languages

Displays the percentage of each language by file size in the
current repository.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

62

CodeArts Repo
User Guide 11 Configuring a Repository

11.5 Backing Up a Repository

To configure remote backup, choose Settings > Repository Management >
Repository Backup on the repository details page.

The repository can be backed up in either of the following modes:

e Back up to Online Repository: Back up the repository to another region.
This mode imports a repository from a region to another region.
e Back up to Local PC: Back up the repository to your local PC.

You can use the HTTPS or SSH clone mode. The clone command is generated
as shown in the following figure. You only need to paste the command to the
local Git client and run it. (Ensure the repository connectivity.)

All repository members can view this page. For details about whether a
repository member has repository setting permissions, refer to Permissions.

Repository Backup

Backup to Online Repository

Target Region

Backup to Local PC

Copy the following command, run it in the Git command line, and back up the complete repository. Using HTTPS

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

CodeArts Repo
User Guide 12 Managing Repo Member Permissions

1 2 Managing Repo Member

Permissions

12.1 IAM Users, Project Members, and Repository
Members

Repository members come from project members of the project to which the
repository belongs. Project members mainly come from IAM users of tenants. In
addition to the tenant to which the project creator belongs, IAM accounts of other
tenants can be invited to join the project. The following figure shows the
relationships between IAM users, project members, and repository members.

IAM user group of account 1

Members of project A in account 1

Repository members of project A in account 1

IAM user group of account 2 IAM user group of account 3 IAM user group of account n

Table 12-1 Mapping between project roles and repository roles

Project Role Repository Role

Project Manager Project manager (default)
Product Manager Product manager (default)
Test Manager Test manager (default)
Operation Manager Operation manager (default)

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

CodeArts Repo

User Guide 12 Managing Repo Member Permissions
Project Role Repository Role
System Engineer System engineer (default)
Committer Committer (default)
Developer Developer (default)
Tester Tester (default)
Participant Participant (default)
Viewer Viewer (default)
Custom Role Custom role (default)

By default, the project creator is both the project administrator and repo
administrator (repo owner).

12.2 Configuring Project-Level Permissions

Step 1 Log in to the CodeArts Repo homepage. In the navigation pane on the left, choose
Settings > General > Service Permissions. The Service Permissions page is
displayed.

Step 2 Select the corresponding Role > CodeArts Repo, and click Edit to configure
permissions.

(11 NOTE

1. The project manager and other users with management permissions can modify the
default operation permissions of different roles in the project on this page.

2. You can click " in the Role column to create a role. The new role name cannot be the
same as a system role name. However, the new role can copy the permissions of an
existing role. If the permissions of an existing role are not copied to a new role, the new
role does not have any permissions. However, you can add permissions for a custom role
as required, as shown in Table 1.

--—-End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

CodeArts Repo
User Guide 12 Managing Repo Member Permissions

Table 12-2 Configuring Project-Level Role Permissions

Role |Pe |Pr |[Pr [Te |Op | Sys | Co De | Tes | Par | View | Custo
/ rm (oje ([od [st [era [te | mm |vel | ter |tici |er m Role
Per |iss |ct [uc |m |tio | m |itter | op pan
miss |[io (M [t |an |n En er t
ion |n [(an [M |ag | Ma | gin
ag |an |er | nag | eer
er |ag er
er
Bran | Cr | B Cc |C C B B B C C D C
ch ea
te
De | B c |C |C B B B |C C D C
let
e
Cod [Co |B c |C |C A A A |C C D C
e m
mi
t
Do | B c |C |C A A A |C @ D C
wn
loa
d
Rep |Cr |B c |C |C B B B |C C D C
osit | ea
ory |te
grou
P De | B D |D (D D D D |D D D @
let
e
Set | B D |[D |D D D D |D D D C
tin
gs
Me |Ad |B D |D (D D D D |D D D @
mbe | d
rs
Edi | B D (D |D D D D |D D D C
t
De | B D |D (D D D D |D D D @
let
e
MR |Cr |B c |C |C B B B |C C D C
ea
te

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

CodeArts Repo

User Guide 12 Managing Repo Member Permissions
Role ([Pe [Pr |Pr | Te |Op | Sys | Co De | Tes | Par | View | Custo
/ rm |oje |od|st |[era |[te | mm |vel|ter | tici |er m Role
Per |iss |[ct |uc |m |tio [m |itter [op pan
miss [io (M [t |an |n En er t
ion | n an |M |ag | Ma | gin

ag |an |er | nag | eer
er | ag er
er
Edi | B D |D (D @ B cC |D D D @
t
Co |B c [C |C B B B |C C C C
m
me
nt
Re | B D |D (D B B B D D C @
vie
w
Ap | B D |D (D @ B cC |D D D @
pr
ov
e
M | B D |D (D C B cC |D D D C
er
ge
Cl |B D |D (D C B cC |D D D C
0s
e
Re | B D |D (D C B cC |D D D C
op
en
Rep |Cr | B c [C |C B B B |C @ D @
osit | ea
ory |te
for | B c [C |C B B B |C @ D C
k(
M
R)
De | B D |D (D D D D |D D D @
let
e
Set | B D |D (D D D D |D D D @

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

CodeArts Repo
User Guide

12 Managing Repo Member Permissions

Role ([Pe [Pr |Pr | Te |Op | Sys | Co De | Tes | Par | View | Custo

/ rm |oje |od|st |[era |[te | mm |vel|ter | tici |er m Role
Per |iss |[ct |uc |m |tio [m |itter [op pan
miss [io (M [t |an |n En er t

ion | n an |M |ag | Ma | gin
ag |an |er |nag | eer

er |ag er
er

Tag |Cr |B CcC |C C B B B C C D C
ea
te
De | B CcC |C C C C C |C C D C
let
e

1O NOTE

e A:indicates that the role has the permission by default and the permission cannot be
removed.

e B:indicates that the role has the permission by default and the permission can be
removed.

e (C:indicates that the role can have the permission assigned.
e D: indicates that the role cannot have the permission assigned.

12.3 Configuring Repo-Level Permissions

Only modifiable by the project administrator and the owners of parent repository
groups and repositories. After confirming that you are an administrator, go to the
CodeArts Repo homepage and click the name of the code repository to be set. On
the code repository details page that is displayed, click Member in the navigation
tree to add members to the code repository. Complete the member configuration
of the code repository. In the navigation pane, choose Settings. On the settings
page that is displayed, choose Security Management >. Permissions. If Inherit
from project is enabled, the permissions of members in the current role list will
be the same as those of the project, and the current permission configuration will
be overwritten.

|
Click = on the right to sync custom roles of the project. By default, custom roles
do not have the permission to perform operations on Repo. After the
synchronization, you can add permissions listed in Table 12-3 as required.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

CodeArts Repo
User Guide

12 Managing Repo Member Permissions

Table 12-3 Configuring permissions for repo roles

Role |Pe |Pr [Pr [Te |Op | Sys | Co De | Tes | Par | View | Custo
/ rm (oje |[od st [era [te | mm |vel | ter |tici |er m Role
Per |iss |ct [uc |M |tio | m |itter | op pan
miss [io (M |t |an |[n En er t
ion |n (an |M |ag [Ma | gin
ag [an |er |nag | eer
er |ag er
er
Rep for | B cC |[B |C B B B |C C D C
osit | K
°Y |De|B |D |D |[D |D |D |D |D |D |D |C
let
e
Set | B D |[D |D D D D C
Cod |Co |B Cc |C A A A D C
e m
mi
t
Do | B c |C |C A A A |C C D C
wn
loa
d
Me |Ad |B D (D |D D D D |D D D C
mbe | d
rs
Edi | B D [D |D D D D |D D D @
t
De | B D [D |D D D D |D D D C
let
e
Bran [Cr | B c |C C B B B C C D C
ch ea
te
De | B cC |C |C B B B |C C D C
let
e
Tag |Cr | B c |C C B B B C C D C
ea
te
De | B cC |C |C C C Cc |C C D C
let
e
Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

CodeArts Repo

User Guide 12 Managing Repo Member Permissions
Role (Pe [Pr |Pr | Te |Op | Sys | Co De | Tes | Par | View | Custo
/ rm |oje |od st |[era |[te | mm |vel|ter | tici |er m Role
Per |iss [ct |uc |M |tio [m |itter [op pan
miss [io (M |t |an | n En er t
ion | n an (M |ag | Ma | gin

ag |an |er | nag | eer
er |ag er
er
MR | Cr |B c |[C |C B B B |C @ D @
ea
te
Edi | B D |D (D @ B CcC |D D D @
t
Co |B c |[C |C B B B |C C C C
m
me
nt
Re | B D |D (D B B B |D D C @
vie
w
Ap | B D |D (D @ B CcC |D D D @
pr
ov
e
M | B D |D (D C B cC |D D D C
er
ge
Cl |B D |D (D C B CcC |D D D C
0s
e
Re | B D |D (D C B CcC |D D D C
op
en
] NOTE

e A:indicates that the role has the permission by default and the permission cannot be
removed. B: indicates that the role has the permission by default and the permission can
be removed. C: indicates that the role can have the permission assigned. D: indicates
that the role cannot have the permission assigned.

Download and comment permissions are fixed in the public repos' settings, while other
permissions mirror those of the private repos

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

70

CodeArts Repo
User Guide 12 Managing Repo Member Permissions

12.4 Syncing Project Members to CodeArts Repo

CodeArts Repo allows you to sync project members to your repo groups and
repositories for better project managements. Choose between automatic or
manual sync to suit your needs.

Before adding a repo group and repo member, ensure that the member has been
added to the project. For details about project member management, see project-
level member management.

The repo owner, repo administrator, and custom roles with member management
permissions can change repo members. Other users can only view the repo
member list.

Auto-Syncing Project Members to a Repository Group or Repository

CodeArts Repo supports syncing project members within one click. After this
function is enabled, project members of the selected role can be automatically
synced to all repo groups and repos in the project.

Go to the project homepage. Click Settings. Choose Security Management >
Member Sync, click Sync project member ,and select the target members. The
project manager will always be synced regardless of the toggle. Click the refresh
button to sync all the current settings.

NOTICE

Automatic sync of updated project members is triggered only when Sync Project
Members is enabled.

Manually Adding Project Members to a Repository Group or Repository

Go to the repo group or repository homepage, click the Members tab, and click
Add Member. The page for adding members is displayed in either of the following
ways:

e On the Members tab page, enter a keyword and press Enter to search for a
member.
e On the Groups tab page, select a member group from the drop-down list.

(11 NOTE

e In the member list, all members can be set to any project role and can be removed from
the repository.

e If the repository-level member list is empty, the repository does not have members
other than the owner. Add project members first.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

https://support.huaweicloud.com/intl/en-us/usermanual-projectman/devcloud_hlp_00026.html
https://support.huaweicloud.com/intl/en-us/usermanual-projectman/devcloud_hlp_00026.html

CodeArts Repo
User Guide

13 Cloning or Downloading Code Repo to a Local PC

1 3 Cloning or Downloading Code Repo

to a Local PC

13.1 Differences Between Cloning and Downloading a

Repository

Both cloning and downloading the code repository are ways of obtaining the code
repo, but their operations and outcomes vary.

1.

Clone a repo to a local PC.

Use the SSH key or HTTPS protocol to clone a repo: copy the contents of the
entire repo to the local computer and create a local repo. The local repository
contains the complete history of code commits, branches, and tags for version
controls and modifications. Currently, CodeArts Repo supports cloning code
repositories using Git Bash and TortoiseGit clients. Before cloning repos in
CodeArts Repo with an SSH key, configure the SSH key for accessing
CodeArts Repo.

Download a repo.

Download one or more files or folders in the repo to a local computer. This
does not contain complete code commit history, branches, or tags. Version
control and modification cannot be performed. Currently, CodeArts Repo
allows you to download code using a browser.

Therefore, if you need to control and modify the version of the code repo, you
need to use the SSH key or HTTPS protocol to clone the code repo. If you only
need to obtain one or more files of the code repo, you can use a browser to
download the code repo.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

CodeArts Repo
User Guide 13 Cloning or Downloading Code Repo to a Local PC

NOTICE

e |f you want to clone the code repo and develop code locally, go to the home
page of the code repo to be cloned from CodeArts Repo, choose Branches >
Create Branch, and create a development branch based on the master branch.

e Currently, CodeArts Repo supports cloning only one code repo at a time. If you
want to clone multiple code repo to the local host at a time, you can download
multiple repo using Shell or batch processing commands.

13.2 Using the SSH Key to Clone a Repo to a Local PC

Using Git Bash to Clone a Repo to a Local Host

The SSH key is a secure identity authentication method used to access a remote
server. Using an SSH key to clone a code repository avoids the username and
password each time for higher efficiency of cloning a code repository.

Step 1 Access CodeArts Repo homepage.

Step 2 Go to the repo homepage of the code to be cloned, create a personal branch, click
Clone/Download, and copy the SSH address.

Step 3 On the local Git Bash client, run the following command to access the address of
the code repository to be cloned. This command indicates that the cloned code
repository will be cloned to the Repo folder in drive D. You can change the address
as needed.

cd D:/Repo

Step 4 Run the following command to clone the repository to the directory:

SSH address of git clone code repo

If you clone the repository for the first time, the system asks you whether to trust
the remote repository. Enter yes.

If the following figure is displayed, the repo is cloned successfully.

Figure 13-1 Successful cloning of the repository using the SSH key

0), pack-reused 0

If Git Bash reports error git@test.com: Permission denied.fatal: Could not read
from remote repository.Please make sure you have the correct access rights
and the repository exists. in step 3, the SSH key for accessing Repo has not been
configured. Configure the SSH key first. For details, see Configuring an SSH
Private Key.

--—-End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

CodeArts Repo
User Guide

13 Cloning or Downloading Code Repo to a Local PC

Use the SSH key to clone the code repo to the local host in TortoiseGit.

Step 1
Step 2

Step 3

Step 4

Step 5

Access CodeArts Repo homepage.

Go to the home page of the code repo to be cloned, click Clone/Download, and
copy the SSH address.

Go to the local directory where you want to clone the repository, and choose Git
Clone... from the right-click menu.

In the displayed dialog box, paste the SSH address copied in step 2 to the URL
text box, select Load PuTTY key, and select the private key file generated during
TortoiseGit installation.

Click OK. If you clone the code repository on the TortoiseGit client for the first
time, the system asks you whether to trust the remote repository. Click Yes.

--—-End

13.3 Using HTTPS to Clone Code from CodeArts Repo
to a Local Computer

Using Git Bash to Clone a Repo to a Local Host

Step 1
Step 2

Step 3

Step 4

Access CodeArts Repo homepage.

Go to the home page of the code repo to be cloned, click Clone/Download, and
copy the HTTP address.

On the local Git Bash client, run the c¢d D:/Repo command to go to the address of
the code repository to be cloned. The following command indicates that the
cloned code repository will be cloned to the Repo folder in drive D.

Run the following command to clone the repository to the directory:
git clone code repo HTTPS link

If you clone code repo for the first time, you need to enter the username and
password. There are two types of usernames and passwords. Select one of the
following methods based on your configuration:

e To view the username and password, log in to and go to the Repo code repo
list page, click the nickname in the upper right corner, and choose This
Account Settings > Repo > HTTPS Password to obtain your username and
password. If you have forgotten the password, you can reset the HTTPS
password.

e Token username and password. The token username is private-token, and
the token password is the configured token. If the token is lost or forgotten,
generate a new token by referring to Configuring an Access Token.

If the following figure is displayed, the repo is cloned successfully. If code repo
fails to be cloned, rectify the fault based on the description.

Issue 01 (2024-11-

11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

CodeArts Repo
User Guide

13 Cloning or Downloading Code Repo to a Local PC

Figure 13-2 Successful cloning of the repository using the HTTPS

remote:

Enumerating ob

remote: Count je

remote: Total a0 - 0 Ttz
Unpacking objec , 589 bytes

--—-End

(10 NOTE

When step 3 is executed, Git Bash reports error fatal: unable to access
'https:test.com/Test_Private.git/': SSL certificate problem: unable to get local issuer
certificate. Before running the git clone command, run the following command so that
Git does not verify the SSL certificate when cloning the code repository using HTTPS:

git config --global http.sslVerify false

During the execution of step 3, Git Bash reports error fatal: unable to access 'https://
test.com/Remote_Test.git/": Failed to connect to test.com port 443 after 21161 ms:
Couldn't connect to server, indicating that the network is disconnected. Contact your
local network administrator.

When step 3 is executed, Git Bash reports error fatal: unable to access 'https://
xxx.git/": Recy failure: Connection was reset, indicating that the domain name
resolution is incorrect. For details about the solution, see FAQs.

When step 3 is executed, Git Bash reports error fatal: destination path 'Test_Private'
already exists and is not an empty directory., indicating that the Test_Private code
repository has been cloned to this path and is not empty. Solution: Switch to a new
empty directory and execute step 3 again.

When step 3 is executed, Git Bash reports error fetal: Authentication failed for 'https:/
xxx.git/', indicating that your password is incorrect. You can log in to the Repo code
repo list page, click the nickname in the upper right corner, and choose This Account
Settings > Repo >. HTTPS Password. Obtain your username and password. If you have
forgotten the password, you can reset the HTTPS password.

Error "The requested URL returned error: 401" Is Reported When HTTPS Is Used to
Clone Code in CentOS This is because of the Git version dis-match.

If you want to embed the access token into the HTTPS download link, run the following
command in step 3: In the preceding command, password indicates your configured
token. If the token is lost or forgotten, you can generate a new token by referring to
Configuring an Access Token. {project name}indicates the project name, and
{repository_name} indicates the name of the code repository to be cloned.

git clone https://private-token:password@codehub.test.com/{project_name}/{repository_name}.git

13.4 Using a Browser to Download Code Package to a

Local PC

CodeArts Repo not only supports code repository cloning, but also allows you to
package and download the repo code a local PC.

Step 1 Access CodeArts Repo homepage.

Step 2 Go to the homepage of the repository to be cloned, switch to the branch to be
downloaded, and click Clone/Download.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

CodeArts Repo
User Guide 13 Cloning or Downloading Code Repo to a Local PC

Step 3 In the dialog box that is displayed, click the required code package type to
download it.

---—-End
LI NOTE
e After the branch is switched, the downloaded package is the content of the specified

branch.

e If an IP address whitelist is set for the repository, only hosts with whitelisted IP
addresses can download the repository source code on the page. If no IP address
whitelist is set for the repository, all hosts can download the repository source code.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

1 4 Uploading Code Files to CodeArts
Repo

14.1 Editing and Creating a Merge Request

Go to the repo homepage, click Code to go to the code homepage, and create a
branch based on the code branch to be merged. Select the branch to be modified,
edit the code, and create a merge request.

e To add a code file, click Create to create a code file or upload one from your
local PC. After modifying a branch, click Create Merge Request on the right
of Code, select the branch to be merged, and click Next. The Create Merge
Request page is displayed, the title is mandatory..

e To modify a code file online, click the file name on the Code page and click

-

& . Edit and save the file. Click Create Merge Request. You can view the file
difference comparison and commit record of the two branches in the lower
part of the page.

NOTICE

e A branch name cannot start with hyphen (-), period (.) refs/heads/refs/
remotes/ nor end with . / .lock. Spaces and the following characters are not
supported:. [\ <~A:2 ()""|

14.2 Creating a Branch and Developing Code in Git
Bash

Step 1 Go to a local repo directory and open Git Bash. Run the following command to
create a branch feature1 based on the master branch and switch to the feature1
branch:

git checkout -b feature1

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

Step 2 The following steps simulate writing the string hello CR to a file named
hello_cr.txt.
echo 'hello CR' > hello_cr.txt

Step 3 Add all modified files in the current directory to the temporary storage area of Git
and prepare to commit them to the version library.
git add .

Step 4 Commit the modified code to the local code repo and add a piece of commit
information.
git commit -m 'hello cr'

Step 5 View the details of the latest commit.
git log -1

Step 6 Run the following command to push the local branch feature1 to the origin
branch of your remote repo and establish a tracing relationship between the local
branch and the remote branch:
git push --set-upstream origin feature1

(10 NOTE

e If connect to host ******** com port 22: Connection timed out is displayed in step 6,
your network is restricted and you cannot access CodeArts Repo. Contact your local
network administrator.

e If you add the local path to the repository of CodeArts Repo after creating a commit,
you cannot change the path of the commit code. You can only delete the file locally or
roll back the commit to forcibly commit the code.

e Check the IP address whitelist. If no whitelist is configured, all IP addresses are allowed
to access the repository. If a whitelist is configured, only IP addresses in the whitelist are
allowed to access the repository.

Step 7 Go to the homepage of the repository where a merge request is to be created,
choose Merge Requests > Create MR, and select the source and target branches.
In the lower part of the page for creating a merge request, you can view the
details of the files in the two branches and the commit records of the branch to be
merged.

--—-End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

CodeArts Repo
User Guide

14 Uploading Code Files to CodeArts Repo

NOTICE

To commit local code to CodeArts Repo, you need to run the git push
command. The git commit command only saves the modifications in the local
repo. Each commit operation generates a new commit record, recording the
modified content, author, and time. The commit operation only saves the code
changes to the local repo and does not sync them to the remote repo.

When you push code to CodeArts Repo, the message "You are not allowed to
push code to protected branches on this project" is displayed. This is because
the branch is protected and you do not have the permission to push code to
the branch. Solution: Go to the repository details page as the repository owner
or project administrator, choose Settings > Policy Settings > Protected

Branches, and click = to cancel the protection for the branch.

The message "src refspec master does not match any" is displayed during code
push. The reason is that you do not run the git add and git commit commands
to add files from the workspace to the temporary storage area in sequence.
Solution: Before running the git push command, run the git add and git
commit commands to submit the modified file to the temporary storage area,
and then run the push command to push the file to the cloud repository.

When you push code to CodeArts Repo, the message "error: failed to push
some refs to 'https://codehub" is displayed. The code in the CodeArts Repo is
inconsistent with that in the local repo. As a result, the code commit is rejected.
Solution: Run the git pull command to pull the code from the remote
repository of CodeArts Repo, merge the code with the local repository, and run
the git push command to push the code to CodeArts Repo.

The git pull command fails to pull code, and the message "Merge branch
'master’ of https://codehub/testMaven Please enter a commit message to
explain why this merge is necessary" is displayed. The code in CodeArts Repo
is different from the code in your local repository. Therefore, when git pull is
executed, the remote code will be merged to the local code. The dialog box
displayed asks you to confirm the merge and enter a commit message.
Solution: See What Can | Do If Code Fails to Be Pulled Using git pull with
Error Message "Merge branch'master' of https://xx.com Please Enter a
commit"?.

If the error message "unable to auto-detect email address" is displayed when
you perform step 4, it means the username and email address are not set. You
can run the following command to configure your personal information:

git config --global user.name {your name}

git config --global user.email {your email address}

If the error message " 'origin on' does not appear to be a git repository..." is
displayed in step 6, it means the repository name origin does not exist
remotely. For details about the solution, see The error message "origin" does
not appear to be a git repository..." is displayed when the git push
command is executed.

If the error message "Not a git respository" is displayed when you perform
step 3, the cause is that you are not in the current code repository directory. In
this case, run the cd command to go to the repository directory.

If the error message "failed to push some refs to '....git"" is reported when you
commit a merge request, see Resolving a Merge Request Conflict.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

https://support.huaweicloud.com/intl/en-us/codeartsrepo_faq/codeartsrepo_06_0005.html
https://support.huaweicloud.com/intl/en-us/codeartsrepo_faq/codeartsrepo_06_0005.html
https://support.huaweicloud.com/intl/en-us/codeartsrepo_faq/codeartsrepo_06_0005.html
https://support.huaweicloud.com/intl/en-us/codeartsrepo_faq/codeartsrepo_06_0012.html
https://support.huaweicloud.com/intl/en-us/codeartsrepo_faq/codeartsrepo_06_0012.html
https://support.huaweicloud.com/intl/en-us/codeartsrepo_faq/codeartsrepo_06_0012.html
https://support.huaweicloud.com/intl/en-us/codeartsrepo_faq/codeartsrepo_06_0041.html

CodeArts Repo

User Guide 14 Uploading Code Files to CodeArts Repo

e In step 6, the message "Connection reset by test port 22 fatal: Could not
read from remote repository."” is displayed, it means the network is unstable
and the request is reset. If this problem occurs occasionally, the network may
be faulty.

14.3 Committing Code in Eclipse and Creating a Merge

Request

If EGit is installed on your local Eclipse, you can commit the local Git repository

code to CodeArts Repo. CodeArts Repo supports only Eclipse 4.4 and later versions.

(11 NOTE

e For the first push:
1. Create a repository on the local computer, that is, the local repository.
2. Commit the update to the local repository.

3. Pull the code from the server to the local repository, merge the code, and push the
repository to the server. After remote commit is complete.

e |[f it is not the first push:
1. Commit the modified code to the local repository.

2. Pull the code from the server to the local repository, merge the code, and push the
repository to the server.

Step 1: Installing EGit on Eclipse

Perform the following steps to install Eclipse 4.4:

On the Eclipse toolbar, choose Help > Install New Software.... In the Install
window that is displayed, click Add..., enter EGit in Name and EGit plug-in
address in Location, click OK, and click Next > until the installation is complete.
After the installation is complete, restart Eclipse.

Step 2: Configuring EGit on Eclipse

1. On the Eclipse toolbar, choose Window > Preferences > Team > Git >
Configuration and enter the User Settings information.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

80

https://download.eclipse.org/egit/updates
https://download.eclipse.org/egit/updates

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

=15 -

y Configuration

& Ganaral -

= Ant User Settings System Settings Repositery Settimgs =
@ Help

= Install/Update Location: C:\Dscumentsiey anfig

Aatematic Updatez

Available Software Si Add Entry. .

Key Value
i Juva . i .
& Run/Debug & Add a configuration entry rs(

e Add a configuration entry

= Tean
® CvE Flease enter o key, ¢ ¢ “user nans” and a value
File Content

= Gt

Commit Dialog Esv |user nsne
Configuration
Confirmation Dial:
History
Labal Dacerstions
Projects
Synchranize [0x][canea |
Window Cache
Tenored Basources
Models
& Usage Dats Collector
Validation
& I

. . [Eesltrre nefanltsj- L_ﬁ_l??l!']
@ Lo][cemca |

¥aluse

2. Click OK.

email indicates the bound email address. If the username is not set
previously, set it in this step.

Configuration L= -

User Settings |System Settings | Repositorv Settings|

Location: C:'\Documents and Setting=\amssy\ gitconfig
ey Value [E il
= user
email " 3 com
name w 3

Step 3: Creating a Project and Committing Code to the Local Git Repository

1. Create the git_demo project and the HelloWorld.java class.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

CodeArts Repo

User Guide 14 Uploading Code Files to CodeArts Repo
[# Package Explorer 23 = [J] HelloWorld. java E-Z "
Bg | Y| ®/d
= k% R package com.test;

= # src
=-F3 com. test
#-[J] HelloWerld java
-2 JRE System Library [jdkl. 6.0 10
] E resources. jar — F '\Frogram B
)

public class HelloWorld !

= public static woid main/(!

:u- rt.jar — F:\Program Files\Js
—

E-ge jsse. jar = F:\Program Files
] :l'[i jea. jar = F:\Program Filesh]
£ 5; charsets, jar - F:\Frogram Fi }
] I;_l:- dnzns. jar - F:'\Program Files
- o localedata. jar - F:'Frogram
= E sunjce_provider. jar - F 'Fro
= i'-u_l; sunmscapl. Jar — F:'\Program [
. ewnnleeell far = F\Praceam 0

2. Share the git_demo project with the local repository.

[2 Packaze Euplorer 53 _ = B[[Hello¥orld. java 53
— = 4
2% & ® /v
nack a3t
= IEJ'FH Mﬂl;&
B@E Tt
=l Go Into
N .) “HelloWorld
Open in Hew Window
== ;
m Open Type Hierarchy T4 atic void main(String[]
Show In ALt+5hi £+ 4
&
& 55 Copy CtirliC
C: 5= Copy Qualified Hame
i ':ﬁ Paste CirltV¥
g U
& ¥ Delete Delete
@ B Remove From Contex Ctrld
* Build Path v
¥ Source ALt+5hi £145 4
B J¢ :
Refactor ALt+5hi £44T 4
W T4
Eag Import. . .
L3 Expart. ..
< Refresh s
Cloze Froject
Assign Workang Sets. ..
Run A= »
Debug As 4
¥alidate)
Compare With [3=

Share Project,

Restore from Local History. ..

3. In the Share Project window displayed, select Git.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

& Share Project

Share Project Yy,

Select the repository plugz-in that will be used to share the selected project. @

Select a repozitory type:
B CYs

FER

=

4. Click Next >. In the Configure Git Repository dialog box, select Use or
create repository in parent folder of project and click Create Repository.

5. Click Create Repository to create a Git repository.
The directory is in the untracked status, indicated by a question mark (?).
Choose Team > Commiit... to commit code to the local repository.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

CodeArts Repo

User Guide 14 Uploading Code Files to CodeArts Repo
{4 Package Explorer <) % = m| |1 HelloWorld java X}
’ 5% e -l /0 Sianit
1 =
o | r————————rrery | package ¢ o] 7.
Hew L
Go Into
] < Remote »
Upen in Eew_'l'l'lndow ..::S;- S!ltqh '1'0 .
Open Type Hierarchy F4 m— vy b
Show In ALt+5hi £r+Y L4
= Copy Ctrl+C g
5= Copy Qualified Wame #| Synchronize Workspace
:." Easte CirltV f
& erg
H Delete Delete ¥ Herge...
Remowe from ntext trlt+al t+Sha f1+Down
Build Path | i
Source ALt+Shi £145 s
1 Refactor Al t+Shy £14T L4 Create Patch. ..
ly Fatch. ..
S Apply Fatc
L3 Export. .. ¥ | Lgnore
-f."?’ Refresh FS = Add to Imdex
Cloze Project % Remove from Index
Assign Worlang Sets. .. EG Untrack
Bun As r {[)) Show in Repositories Yiew
Debug As 4 3_| Show in History
Validate
I} Disconnect
Compare With L |

6. In the Commit Changes dialog box displayed, set the commit message.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

CodeArts Repo
User Guide

14 Uploading Code Files to CodeArts Repo

& Commit Changes

Commit Changes to Git Repository

Commit message 5 D b
[First submission
Anthor: | T N 3e com? |
Committer: él 3 L i@ com? |
Bl
Status Path
[¥ [.claszpath i
O % project
= t;.'_;, binfcomftezt/Hell oWorld. class
[srefcomftest/Helloforld. java
Fush
[[JPush the changes to upstresm
® l Commi t] I Cancel
Click Commit to commit the code to the local repository.
= =
| = git_demo master]
= Hﬂ com. Ltest
* D} Hello®orld. java
ystem Library [jdkl.6.0_1C
+ [_1? resources, jar = F \Frogzram [
* I'_‘.—'_’; rt. jar - F:'\Program Files'Js
+ [\Ff jsse. jar - F:\Program Files!
B jee jar - F:\Program Files\]
+ |j£$ charsets. jar — F:"\Program Fi
& ma dnsns. jar — F '\Frogram Files
IE localadata. jar = F "Frogram
& o sunjce_provider, jar - F'\FPro
+ @; sunmscapi. jar - F:'\Program I
(o sunpkesll. jar - F:'Frogram I
Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

CodeArts Repo
User Guide

14 Uploading Code Files to CodeArts Repo

Step 4: Committing Code in the Local Repository to the Remote Git

Repository

Create a repositor in CodeArts Repo. For details, see Overview.
Go to the repository details page and copy the repository URL.
Choose Team > Remote > Push... to push the code to the remote repository.

[§ Package Explorer [= O || [J] HelloKorld. java &
Bl | @ /=]) Commit. . Ctrl+#
=K J package c
T Hew »
Go Into

id <) Fetch From..

Open Type Hierarchy F4 Ad i ’ el
vance = i
Shoy In AL t+5hi FLHR » = g3 Fetch from Gerrit. ..
3 Push to Gerrit. ..
&1 Pyl =
=| Copy CtrliC
5= Copy Qualified Hame Synchronize Workspace
B Baste Cerl+y
3 Delete Delete ¥
% Merge. ..
= Reset. ..
Euild Fath 4B b
| Sewee ALUHSHi FS | Filebese.
i Refactor AL t+5hi £44T » Create Patch. .
gug Inport Apply Fatch
£ Export. ..) Ignore
4 Refresh FS 4 Add to Index

Cloge Project

Assign Working Sets. ..

Bun As
Debug A=
Yalidate

", Remowe from Index
& Untrack

*| @ Show in Repositories View

» .
=) Show in Hastory

I ¢ 0 -conect

Compare With
Replace With

3

In the Push to Another Repository dialog box, set the

parameters.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

CodeArts Repo
User Guide

14 Uploading Code Files to CodeArts Repo

i@} Push to Another Repository
Destination Git Repository

Enter the location of the destination repository.

-Conf‘igured remote repnsitory:

@ Custom URI:
Location
URI:

Host

Repository path: /wdEEH%23/git_demo.git

Connection

Protocol: |hitps =

Port:

Authentication

User: e

Password: sssssssnes

Store in Secure Store

= (2 [

.\I.llll
L]
-

git. ._‘h:r'l._;.__] t

RIS ERAEEERAE fgit_deme | Local File...

Cen [| (i

4. Click Next. The Push Ref Specifications dialog box is displayed.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

87

CodeArts Repo

User Guide 14 Uploading Code Files to CodeArts Repo
Push Ref Specifications
Select refs to push l“:l I'___
:TJJ

Add createfupaate specificati on

_Source ref: Destination ref:

Y refs/heads/master v | |refs/heads/master v| 5 Add Spec i

Add delete ref specification

Bemote ref to delete: -l v| ® idd spec

Add predefined specification

AHi Bontisurad Faxh Son: | Add ALl Branches Spec || Add ALl Tags Spec |

Specifications for push

Mode Source Ref Destination Ref Force Update Remove

5. Click Add Spec.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

CodeArts Repo

User Guide 14 Uploading Code Files to CodeArts Repo

Push Ref Specifications
Select refs to push. lu_!,_l_i
L] "

Add createfupdate specification

Source ref: Dastination ref:
o

v " |
#

v| g pdd Spec
*

Add delete ref specification

Remote ref to delete; & V| ¥ 4dd spec

#dd predefined specification
Add Configured Fush Specs [Add A1 Bremches Spec | [Add M1 Tegs Spec |

Specifications for push

Mode Source Ref Destination Ref Force Update Eemove ||

o Update refs/heads/master refs/heads/master [l m

[l'orcn Update &1l Spacs] [| g Remowe All Specs

@ [<Baek | Hext> || _ Finish || canca

6. Click Next. The Push Confirmation dialog box is displayed.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

Push Confirmation
Confirm following expected push result. L 1|

Filnaster: master [new branch]

Hessage Details

Repository httpa:/¢codehub. ‘git_dema.git

DPush only if remote refs don't change in the mean time
[JShow final report dialog only when it differs from this confirmation report

@ e[Emia) [Cee]
7. Click Finish.

Pushed to https:/, _ /wenchao523/ git_demo.git

e Mnaster master [new branch]

Message Details

Repository https://codehub. ‘git_demo.git

8. Click OK.
Log in to the remote repository and check the submitted code.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

(11 NOTE

When Eclipse connects to the repository of CodeArts Repo using HTTPS, the message
"Transport Error: cannot get remote repository refs. XXX.git: cannot open git-upload-
pack" is displayed. This is because the EGit plug-in configuration in Eclipse is incorrect.
Solution: Right-click in Eclipse and choose Windows > Preferences > Team > Git >
Configuration > User Settings from the shortcut menu. Click Add Entry, set Key to
http.sslVerify, and set Value to false.

Step 5: Creating a Merge Request in CodeArts Repo

Go to the homepage of the repository where a merge request is to be created,
choose Merge Requests > Create MR, and select the source and target branches.
The lower part of the Create Merge Request page displays the file differences of
the two branches and the commit records of the source branch.

14.4 Using git-crypt to Transmit Sensitive Data on the
Git Client

About git-crypt

git-crypt is a third-party open-source software that can transparently encrypt and
decrypt files in the Git repository. The git-crypt command can be used to encrypt
and store specified files and file types. Developers can store encrypted files (e.g.
confidential information or sensitive data) in the same repository as shareable
code, and the repository can be pulled and pushed just like a normal repository,
with the contents of the encrypted files visible only to those who have the
corresponding file key, but with no restriction on participants' ability to read or
write to unencrypted files.

Using Key Pairs for Encryption and Decryption on Windows

Step 1 Download and install the latest Git client for Windows, download the latest
git-crypt for Windows, and save the downloaded .exe file to the cmd folder in
the Git installation directory.

Step 2 Run the following commands to generate a key pair locally:

Open Git Bash and go to the local repository.

2. Run the following command to create the .git-crypt folder in the Git
repository. The folder contains the key and configuration file required for
encrypting the file.
git-crypt init

3. Run the following command to export the key file to the C:/test directory and
name the file KeyFile:
git-crypt export-key /c/test/keyfile

4. After the preceding steps are performed, you can go to the path of the
exported key file to check whether the key is successfully generated. The
computer containing the key file can decrypt the corresponding encrypted file.

Step 3 Run the following command to configure the encryption range for the repository:

1. Create a file named .gitattributes in the root directory of the repository.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

https://git-scm.com/download/win
https://github.com/oholovko/git-crypt-windows/releases

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

2. Open the .gitattributes file and run the following command to set the

encryption range.
<file_name_or file_range>: filter=git-crypt diff=git-crypt

Four examples are as follows:

FT/fileO1.txt filter=git-crypt diff=git-crypt # Encrypt a specified file. In this example, the file01.txt file
in the FT folder is encrypted.

* java filter=git-crypt diff=git-crypt # The .java file is encrypted.

G* filter=git-crypt diff=git-crypt # Files which names start with G are encrypted.

ForTest/** filter=git-crypt diff=git-crypt # Files in the ForTest folder are encrypted.

git .gitattributes - Notepad|;|£-

ForTest File Edit Format View Help

FT FT/file01 filter=git-crypt diff=git-crypt
images #, java filter=git-crypt diff=git-crvpt

src G+ filter=git-crypt diff=git-crypt
bt FarTest/* filter=git-crypt diff=git-crypt
| .gtattnibutes

|| .gitignare

L] 1java

| GitD01.bet
2| pom.xml

|| README.md

(10 NOTE

e If the system prompts you to enter the file name when you create the .gitattributes
file, you can enter .gitattributes. to create the file. If you run the Linux command to
create the file, this problem does not occur.

e Do not save the .gitattributes file as a .txt file. Otherwise, the configuration does not
take effect.

Step 4 Encrypt the file.

Open Git Bash in the root directory of the repository and run the following
command to encrypt the file. The encryption status of the file is displayed.

git-crypt status

MINGW64:/c/test/20201123

L o i o O e

ot

t

e
e
e
e
(=
e

te
e
e
e
e
(=

ot

After the encryption, you can still open and edit the encrypted files in plaintext in
your local repository because your local repository has a key.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

You can run the add, commit, and push commands to push the repository to
CodeArts Repo. In this case, the encrypted files are pushed together.

Encrypted files are stored in CodeArts Repo as encrypted binary files and cannot
be viewed directly. If you do not have a key, you cannot decrypt it even if you
download it to the local computer.

(11 NOTE

git-crypt status encrypts only the files to be committed this time. It does not encrypt the
historical files that are not modified this time. Git displays a message for the unencrypted
files involved in this setting (see Warning in the preceding figure). If you want to encrypt
all files of a specified type in the repository, run the git-crypt status -f command.

The -f (enforce) option is risky in getting teams to work together, so use it with caution.
Step 5 Decrypt the file.

1. Ensure that the git-crypt file exists in the Git installation path on the local
computer.

CAProgram Files\Githcm d|

] qit
n| git-crypt
git-gui
gitk

B git-Ifs

| start-ssh-agent

| start-ssh-pageant

2. Clone the repository from CodeArts Repo to the local host.

Obtain the key file for encrypting the repository and store it on the local
computer.

. System... » test

Marne Date modified Type

I KeyFile) Text Document

Go to the repository directory and right-click Git Bash.

5. Run the decryption command. If no command output is displayed, the

command is successfully executed.
git-crypt unlock /C/test/KeyFile # Replace /C/test/KeyFile with the actual key storage path.

--—-End

Encrypting and Decrypting a File in GPG Mode on Windows
Step 1 Install and initialize Git.

Step 2 Download the latest Windows-based git-crypt and save the downloaded .exe file
to the cmd folder in the Git installation directory. The following figure uses the

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

https://github.com/oholovko/git-crypt-windows/releases

CodeArts Repo

User Guide 14 Uploading Code Files to CodeArts Repo

default Git Bash installation path of Windows Server 2012 R2 Standard (64-bit)

as an example.

. CA\Program Files\Githcm d|

| git
I B git-crypt
git-gui
gitk
B git-Ifs
start-ssh-agent
start-ssh-pageant

Step 3 Download the GPG of the latest version. When you are prompted to donate the

open-source software, select 0 to skip the donation process.

0Ss Where Description
Windows Gpgdwin Full featured Windows version of GnuPG
download sig Simple installer for the current GnuPG
download sig Simple installer for GnuPG 1.4
0s X Mac GPG Installer from the gpgtools project

GnuPG for 05 X Installer for GnuPG
Debian Debian site GnuPG is part of Debian
RPM rpmfind RPM packages for different OS
Android Guardian project Provides a GnuPG framework
VMS antinode.info A port of GnuPG 1.4 to OpenVMS

RISCOS home page A port of GnuPG to RISC OS

Double-click to start the installation. Click Next to complete the installation.

Step 4 Generate a key pair in GPG mode.

1. Open Git Bash and run the following command:
GPG --gen-key

2. Enter the name and email address as prompted.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

94

https://www.gnupg.org/download/

CodeArts Repo

User Guide 14 Uploading Code Files to CodeArts Repo

vare Foundation, Inc.
stribute 1t.

rator/.gnupg’ created
gnupg/pubring. kbx”’
or a full featured key

Real name: gpgTest
Email addr :
You selected th U
"gpgTest <gpgTest@huahua. com>

Change (N)ame, (E)mail, or (0)kay/(Quit?

3. Enter o as prompted and press Enter. The dialog boxes for entering and
confirming the password are displayed.

Pinentry >

Flease enterthe passphrase to
protect your new key

Passphrase: “

OK Cancel

The password can be empty. For information security, you are advised to set a
new password.

4. If the following information is displayed, the GPG key pair is generated
successfully.

public and secret key created and signed.

72 2020-11-24 [5C] [expires:

Step 5 Initialize the repository encryption.

1. Open Git bash in the root directory of the repository and run the following

command to initialize the repository:
git-crypt init

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

% cd 20201124

2. Run the following command to add a copy of the key to your repository. The
copy has been encrypted using your public GPG key.
git-crypt add-GPG-user USER_ID
USER_ID can be the name, email address, or fingerprint that uniquely
identifies the key, as shown in 1, 2, and 3 in the following figure in sequence.

public and secret key created and signed.

rsa3072 2020-11-24 [SC] [expires: 2022-11-24]
71EQAD
Test <gpgTest@huahua.com> g
[expires: 2022-11-24]

After the command is executed, a message is displayed, indicating that
the .git-crypt folder and two files in it are created.

MINGW64:/c/dev/test/20201124

el: pagp
n, Om, OFf, 1u

Step 6 Configure the encryption scope for the repository.

1. Go to the .git-crypt folder in the repository.

2. Open the .gitattributes file and run the following command to set the

encryption range.
<file_name_or file_range>: filter=git-crypt diff=git-crypt

Four examples are as follows:

FT/fileO1.txt filter=git-crypt diff=git-crypt # Encrypt a specified file. In this example, the file01.txt file
in the FT folder is encrypted.

*java filter=git-crypt diff=git-crypt # The .java file is encrypted.

G* filter=git-crypt diff=git-crypt # Files which names start with G are encrypted.

ForTest/** filter=git-crypt diff=git-crypt # Files in the ForTest folder are encrypted.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

CodeArts Repo
User Guide

14 Uploading Code Files to CodeArts Repo

3.

keys .gitattributes - Notepad

L gitattributes File Edit Format View Help

+ lfilter 'diff

*, zpz binary

FT/file0l. txt filter=git-crvpt diff=git-crypt
*, java filter=zit-crypt diff=zit-crypt

G* filter=git-crvpt diff=zit-crvpt
ForTest/+ filter=git-crypt Hiff=zit-crypt

Copy the .gitattributes file to the root directory of the repository.

Step 7 Encrypt the file.

Open Git Bash in the root directory of the repository and run the following
command to encrypt the file. The encryption status of the file is displayed.

git-crypt status

MINGW64:/c/dev/test/20201124

ot ot

MMM

T+

t

t

ed
e

te
[=
e
e

+

Do not edit this file. To specify the files to encrypt, create your own
.zitattributes file in the directory where vour files are.

After the encryption, you can still open and edit the encrypted files in plaintext in
your local repository because your local repository has a key.

You can run the add, commit, and push commands to push the repository to
CodeArts Repo. In this case, the encrypted files are pushed together.

Encrypted files are stored in CodeArts Repo as encrypted binary files and cannot
be viewed directly. If you do not have a key, you cannot decrypt it even if you

download it to the local computer.

(11 NOTE

git-crypt status encrypts only the files to be committed this time. It does not encrypt the
historical files that are not modified this time. Git displays a message for the unencrypted
files involved in this setting (see Warning in the preceding figure). If you want to encrypt
all files of a specified type in the repository, run the git-crypt status -f command.

In team cooperation, -f (forcible execution) has certain risks and may cause the members'
work output to remain unchanged. Exercise caution when using -f.

Step 8 Export the key.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

97

CodeArts Repo
User Guide

14 Uploading Code Files to CodeArts Repo

3.

Lists the currently visible keys. You can view the name, email address, and

fingerprint of each key.
GPG --list-keys

Ttimate] gpgTest <gpg
20-11-24 [E] [expires

st/20201124 (master)

Run the GPG --export-secret-key command to export the keys. In this

example, the GPGTest key is exported to drive C and named Key.
GPG --export-secret-key -a GPGTest > /c/key

During the execution, the system prompts you to enter the key password.
Enter the correct password.

No command output is displayed. You can view the key file in the
corresponding directory (drive C in this example).

Send the generated key to the team members to share the encrypted file.

Step 9 Import the key and decrypt the file.

1.

To decrypt files on another machine, download and install git-crypt and GPG
based on Git.

Clone the corresponding repository to the local host.

Obtain the key of the corresponding encrypted file. For details about how to
export the key, see step 8. In this example, the obtained key is stored in drive
C.

Go to the repository, open Git Bash, and run the import command to import
the key. You will be prompted to enter the key password during the import.
GPG --import /c/key

Run the unlock command to decrypt the file.

git-crypt unlock

During the decryption, a dialog box is displayed, prompting you to enter the
password of the key. If no command output is displayed after you enter the
correct password, the decryption is successful.

§ git-crypt unlock

Step 10 View the file before and after decryption.

--—-End

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

Application of git-crypt Encryption in Teamwork

In most cases, a team needs to store files that have restricted disclosure in the
code repository. The combination of CodeArts Repo, Git, and git-crypt can be
used to encrypt some files in the distributed open-source repository.

Generally, Key pair encryption can meet the requirements of restricting the
access to some files.

When a team needs to set different confidential levels for encrypted files, the GPG
encryption can be used. This encryption mode allows you to use different keys to
encrypt different files in the same repository and share the keys of different
confidential levels with team members, restricting file access by level.

Installing git-crypt and GPG on Linux and MacOS
Install git-crypt and GPG on Linux.

e Linux installation environment

Software Debian/Ubuntu RHEL/CentOS Package
Package

Make make make

A C++11 compiler (e.g. | g++ gcc-c++

gcc 4.9+)

OpenSSL development | libssl-dev openssl-devel

files

e In Linux, install git-crypt by compiling the source code.
Download the source code.

make
make install

Install git-crypt to a specified directory
make install PREFIX=/usr/local
e In Linux, install GPG by compiling the source code.

Download the source code.

./configure
make
make install

e Install git-crypt using the Debian package.
Download the source code.
The Debian package can be found in the debian branch of the project Git
repository.
The software package is built using git-buildpackage, as shown in the
following figure.

git checkout debian
git-buildpackage -uc -us

e Install GPG using the build package in Debian.
sudo apt-get install gnupg

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

https://github.com/AGWA/git-crypt
https://www.gnupg.org/download/index.en.html
https://github.com/AGWA/git-crypt

CodeArts Repo
User Guide 14 Uploading Code Files to CodeArts Repo

Install git-crypt and GPG on macOS.

e Install git-crypt on macOS.

Run the following command to install git-crypt using the brew package
manager.

brew install git-crypt
e Install GPG on macOSs.

Run the following command to install git-crypt using the brew package
manager.

brew install GPG

14.5 Viewing Commit History

CodeArts Repo allows you to view details about the commit history and related
file changes. You can view the commit history on the Activities tab page of a repo
or on the History tab page of a repo file list.

Viewing the Commit History on the Repo Activities Page

Go to the homepage of the code repository to be viewed and click Activities to
view all activities of the repositories. To view the activities within a specified
period, select a period on the right. To view the activities of a repo member, select
the repo member from the drop-down list box on the right.

e AL If no time range or member is selected, the operation records of all
members in the repo are displayed.

e Push: If no time range or member is selected, the push records of all
members in the repository are displayed, for example, code push, branch
creation, and branch deletion.

e Merge Request: If no time range or member is selected, the merge request
records of all members in the repository are displayed. You can click the
sequence number of a merge request to view details, such as creating, closing,
re-opening, and merging MRs.

e Review: This tab displays all review comments of the repository. You can click
the commit ID to view details such as adding or deleting comments.

e Member: This tab displays the management records of all members in the
repository, for example, adding or removing members and editing member
permissions.

(11 NOTE

e The displayed information includes the operator, operation content, and operation time.

e You can specify search criteria, such as the time range and operator, to filter and query
data.

You can view the commit history on the History tab page of the Files or Activities
tab. You can click a commit record to view the committer, commit number, parent
node, number of comments, and code change comparisons.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

CodeArts Repo
User Guide

14 Uploading Code Files to CodeArts Repo

ial commit

You can click the icon in the following figure to switch the horizontal or vertical

display of code change comparison. You can click Show All to view the full text of
the files involved in the commit.

-+ Show A = Settings

Settings

Change Display E

lgnore Space

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

CodeArts Repo
User Guide

15 Developing a Workflow

1 5 Developing a Workflow

15.1 Workflow Overview

Git workflows can be used for versioning, project process management, and
collaborative development, improving project management and collaborative
development capabilities. It is necessary to pick your own Git workflow based on
your team requirements and workflow for continuous integration, continuous
delivery, and fast iteration.

There are several common Git workflows. The following sections describe their
processes, advantages, disadvantages, and some usage tips.

e Centralized workflow
e Feature branch workflow

15.2 Centralized Workflow

Centralized workflows are suitable for small teams that have just transformed
from SVN to Git. Centralized workflows are developed in a central repo.
Developers clone the repository from the central repo and push the code to the
central repo after the development.

Advantages
e Central management. In a centralized workflow, all code repositories are
stored in a central repository, facilitating code management and maintenance.
e Efficient collaboration. Team members can share and collaborate with each
other through the central repository.
e Secure and reliable. The central repository can be backed up and restored for
code security and reliability.
Disadvantages

e Dependency on the central repo: All code depends on the central repo. If the
central repo is faulty, the development work of the entire team will be
affected.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

CodeArts Repo
User Guide

15 Developing a Workflow

e Code conflicts: All code is managed in the central repository. Conflicts may
occur when team members modify code. Therefore, you need to manually
resolve conflicts to ensure code correctness.

e Permission management: All code is managed in the central repository.
Therefore, the permissions of team members need to be managed to ensure
code security and reliability.

e Not suitable for large project teams: For large project teams, centralized
workflows may make it difficult to manage and maintain the central
repository, affecting development efficiency and code quality.

Centralized Workflow Process

Step 1

Step 2

Step 3

Step 4

Step 5
Step 6
Step 7

Create a code repository. In CodeArts Repo, you can create a custom repository,
create a repository using a template, and fork an existing repository. You can
also import a local repository, import a Git repository, or import an SVN
repository.

Clone a code repository. Currently, CodeArts Repo supports code cloning from
CodeArts Repo to a local computer by using an SSH key and HTTPS.

Create a local branch and compile code or create a branch online and compile
code.

Commit the modified code file to the cache. Currently, Repo supports code commit
with Git Bash or Eclipse.

Developers create a merge request.
Resolve review comments.
Committers merge the MR.

--—-End

15.3 Feature Branch Workflow

Advantages

This function allows teams to independently develop new functions or fix bugs
without affecting the master branch (usually master or main). The core of this
workflow is to use branches to manage different development phases, improving
team collaboration efficiency and code quality.

e Parallel development: Team members can independently develop new
functions or fix problems without affecting the master branch.

e Code isolation: Each branch is independent. That is, the change of a branch
does not affect other branches, reducing the risk of code conflicts.

e Fast iteration: By creating and merging branches, teams can quickly iterate
new functions or fixes, accelerating software development.

e Easy management: Branches can be created and merged using the Git
command line tool or GUI, making versioning more intuitive and convenient.

e Code review: Code review before merging branches helps ensure code quality
and knowledge sharing among team members.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

CodeArts Repo
User Guide 15 Developing a Workflow

e Rollback and cancellation: Code can be quickly restored to the previous state
when a problem occurs during development.

Disadvantages

e Complex merge: When multiple function branches need to be merged back to
the master branch, complex merge conflicts may occur. In this case, you need
to resolve the merge conflicts.

e Resource consumption: Maintaining multiple function branches may consume
more computing resources and storage space.

e Branch management: Effective branch management policies are required to
prevent too many branches or disordered relationships between branches.

Workflow

Step 1 Create a code repository. In CodeArts Repo, you can create a custom repository,
create a repository using a template, and fork an existing repository. You can
also import a local repository, import a Git repository, or import an SVN
repository.

Step 2 Create a local branch and compile code or create a branch online and compile
code.

Step 3 Commit the modified code file to the cache. Currently, Repo supports code commit
with Git Bash or Eclipse.

Step 4 Developers create a merge request.
Step 5 Resolve review comments.
Step 6 Committers merge the MR.

----End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Creating and Configuring a CodeArts

Project

16.1 Configuring Project-Level Commit Rules

On the CodeArts Repo homepage, go to the project homepage and choose
Settings > Policy Settings > Repository Settings. For details about how to set the

parameters, see Table 16-1.

Table 16-1 Project-level parameters

Parameter

Description

Force inherit

Optional. Once selected, all repo
groups and code repos in the project
use the following settings and cannot
be changed. Exercise caution when
selecting this option.

Do not fork a repository

Optional. Once selected, no one can
fork the repo in the project.

Pre-merge

Optional. Once this is selected, the
server automatically generates the
pre-merge code of the MR. Compared
with running commands on the client,
this operation is more efficient and
simple, and the build result is more
accurate. This option applies to
scenarios that have strict requirements
on real-time build.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

105

CodeArts Repo

User Guide 16 Creating and Configuring a CodeArts Project
Parameter Description
Branch Name Rule Optional. All branch names must

match the regular expression with
max. 500 characters. If this field is left
blank, any branch name is allowed.
The rules must meet the following tag
naming rules:

e Max. 500 characters.

e Do not start with refs/heads/refs/
remotes/ or end with . / .lock.
Spaces and the following characters
are not supported:. [\ <~A:?2 ()"'"

Tag Name Rule Optional. All tag names must match
the regular expression specified by this
parameter. If this field is left blank, any
tag name is allowed. The basic tag
naming rules must be met.

e Max. 500 characters.

e Do not start with refs/heads/refs/
remotes/ or end with . / .lock.
Spaces and the following characters
are not supported:. [\ <~A: 2 ()"'"

Configuring Project-Level Protected Branch Rules

CodeArts Repo makes code branches more secure by preventing anyone other
than the administrator from committing code, preventing anyone from forcibly
committing code, or from deleting the branch. You can set this branch to be
protected. The procedure is as follows: On the CodeArts Repo homepage, go to
the project homepage, choose Settings > Policy Settings > Protected Branch,
click Create Protected Branch, and set parameters as follows.

Step 1 Enter a branch name. This parameter is mandatory. Enter a complete branch
name or a branch name with wildcard characters. If a branch contains a single
slash (/), the branch cannot be matched using the wildcard * due to the fnmatch
syntax rule.

Step 2 You can set the push or merge permission for the administrator/project manager,
committer, and developer. These two permissions cannot be granted at the same
time because the protected branch cannot be forcibly pushed or merged into the
code. You can create, edit, and delete protected branches in batches.

--—-End

If you want all repo groups and repo in this project to use the preceding settings,
select Force inherit.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

CodeArts Repo
User Guide 16 Creating and Configuring a CodeArts Project

Configuring Project-Level Commit Rules

CodeArts Repo supports verification and restriction rules for high-quality code
commits. On the CodeArts Repo homepage, go to the project homepage, choose
Settings > Policy Settings > Commit Rules, and click Create Commit Rule. For
details, see Table 16-2.

Table 16-2 Parameters for project-level commit rules

Parameter Description
Rule Name Mandatory. Custom rule name.
Branch Enter a complete rule name or create

a regular expression. This parameter is
mandatory. The input needs to be
verified, including the branch name
and regular expression.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Parameter

Description

Commit Rule

Optional.

e Commit Message Match: This
parameter is empty by default. If
left blank, all messages can be
committed. Every commit message
that matches the regex can be
committed. You can also set that
the committed information must
contain the work item number to
implement E2E code tracing with
max. 500 characters.

¢ Commit Message Negative Match:
This parameter is empty by default.
If left blank, all messages can be
committed. Every commit message
that matches the regex provided in
it, will be rejected with max. 500
characters.

e Commit Author: This parameter is
left empty by default, indicating
that the commit author is not
verified, and any parameter can be
committed. This field supports a
maximum of 200 characters.

The commit author can run the git
config -l command to view the
value of user.name and run the git
config --global user.name
command to set the value of
user.name.

Example:

Rules for setting the commit author: ([a-z][A-
Z]{3})([0-91{1,9})

e Commit Author's Email: This
parameter is left empty by default,
indicating that the commit author
email is not verified, and any
parameter can be committed. This
field supports a maximum of 200
characters.

The commit author can run the git
config -l command to view the
value of user.email and run the git
config --global user.email
command to set the email address.

Example:
Commit author's email: @my-company.com$

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Parameter

Description

Basic Attributes

Optional.

e File Name That Cannot Be
Changed: This parameter is left
empty by default, indicating that a
file with any name can be
committed. You are advised to use
standard regular expressions to
match the file name. By default, the
file path is verified based on the file
name rule. This field supports a
maximum of 2,000 characters.

Example:
File name that cannot be changed: (\.jar|\.exe)
$

e Each File Size (MB): The default
value is 50, indicating that the push
is rejected if the size of the added
or updated file exceeds 50 MB.

NOTE

When a repository is created, the max. size
of a single file in the default commit rule is

50 MB for recommendation. The max. file
size is 200 MB.

Binary Rules

Optional.

This is not selected by default. Do not
allow new binary files (privileged
users excepted) is selected by default.
After Allow changes to binary files is
selected, binary files in the modify
state will not be intercepted and can
be directly uploaded. Binary files can
be deleted without binary check.

e Do not allow new binary files
(privileged users excepted)

e Allow changes to binary files
(privileged users excepted)

e Repo File Whitelist (files that can
be directly imported to the
database. This field supports a
maximum of 2,000 characters.)

e Privileged Users (Max. 50
privileged users.)

NOTE
If the privileged user is not a repository
member, the system displays a message
indicating that the privileged user fails
to be verified when you click Save. In
this case, remove the privileged user to
save the information.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

CodeArts Repo

User Guide 16 Creating and Configuring a CodeArts Project
Parameter Description
Effective Date Optional.

Before being committed, all commits
created after the effective date must
match the hook settings. If this
parameter is left empty, all commits
are checked regardless of the commit
date.

Common Regular Expression Examples

Common regular expression examples are listed below.

Table 16-3 Examples

Rule Example
Single a, b, or c [abc]
Characters other than a, b, or c [Aabc]
Lowercase letters ranging from a to z [a-Z]
Characters other than the range of a to z [ra-Z]
Uppercase and lowercase letters in the range of a [a-zA-Z]
tozorAtoZ

Any single character

Eitheraor b alb
Any blank character \s
Non-blank character \S
Arabic numeral character \d
Non-Arabic numeral characters \D
Letters, digits, or underscores (_) \w
Characters other than letters, digits, or underscores | \W

Q)

Match the content in parentheses (not capture) (?:..)
Match and capture the content in parentheses (...)
No or one a a?

No or more a's a*
One or more a's a+

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

110

CodeArts Repo

User Guide 16 Creating and Configuring a CodeArts Project
Rule Example
Three a's a{3}
More than three a's a{3,}
3to6a's a{3,6}
Beginning of text A
End of text $
Word boundary \b
Non-word boundary \B
Line breaker \n
Carriage return character \r
Tab key \t
Null string \0

Configuring Project-Level Merge Request Rules

A merge request rule consists of three parts: merge mechanism, merge condition,

MR setting, and merge method.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Table 16-4 Parameters of the merge mechanism

Parameter

Description

Merge Mechanism

Mandatory. There are two options.

e Score: Code review is included. You
can set minimum merge score and
the score ranges from 0 to 5. The
code can be merged only when the
score and mandatory review meet
pass conditions. Set a minimum
score when using this mechanism.

e Approval: It consists of code review
and merge approval. Code can be
merged only after the number of
reviewers reaches gate
requirements.

NOTE

e By default, Approval is used. You
can manually switch to Score.

e After the merge mechanism is
changed, the workflows of the MRs
are changed. However, the early
created MRs retain the previous
merge mechanism.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Table 16-5 Parameters of merge conditions

Parameter

Description

Merge Conditions

Optional. The options are as follows:

e Select Only when all reviews and
comments are resolved. If Must
resolve is selected, Review
comment gate: failed will be
displayed and the Merge button is
dimmed. If it is only a common
review comment, the Resolved
button does not exist, and the
comment will not be intercepted by
the merge condition.

e If you select Only when associated
with CodeArts Req, all associated
E2E ticket numbers must pass the
verification. One MR can be
associated with only one ticket
number. You can add multiple
branches to configure the merge
request policy. You can manually
enter wildcard characters, for
example, *-stable or production/*,
and press Enter to confirm.

Table 16-6 MR settings parameters

Parameter

Description

Do not merge your own requests

After this parameter is selected, the
Merge button is unavailable when you
view the MRs created by yourself. You
need to ask the person who has the
permission to merge the MRs.

Do not approve your own requests

If you select this parameter, the
Approve button is dimmed and you
cannot approve your own MRs. You
need to ask another person with the
approve permission to approve your
MRs.

Do not review your own requests

If you select this parameter, the
Review button is dimmed and you
cannot review your own MRs. You
need to ask another person with the
approve permission to approve your
MRs.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

113

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Parameter

Description

A repo administrator can force merge
code

The project creator and administrator
roles have the permission to forcibly
merge MRs. If the merging conditions
are not met, these roles can click
Force Merge to merge MRs.

Allow code review and comment for
merged or closed MRs

After this parameter is selected, you
can continue to review and comment
on the merged MR.

Mark the automatically merged MRs
as Closed (If all commits in the B MR
are included in the A MR, the B MR is
automatically merged after the A MR
is merged. By default, the B MR is
marked as merged. You can use this
parameter to mark the B MR as
closed.)

e If this parameter is not selected,
automatically merged MRs are
marked as merged.

e If this parameter is selected, MRs
that are automatically merged are
marked as closed.

Cannot re-open a Closed MR

If this option is selected, the branch
merge request cannot be set back to
Open after it is closed. Re-open in the
upper right corner is hidden.

This parameter is used for process
control to prevent review history from
being tampered with.

Delete source branch by default after
the MR is merged

After the merge, the source branch is
deleted.

e A protected source branch cannot
be deleted.

e This setting does not take effect for
historical MRs. Therefore, you do
not need to worry about branch
loss.

Do not Squash

After this parameter is selected, the
Squash button is unavailable, and the
entry for using this button is
unavailable in the MR.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

CodeArts Repo

User Guide 16 Creating and Configuring a CodeArts Project
Parameter Description
Enable Squash merge for new MRs When squash merge in Git, all changes

from the branch being merged are
"squashed" into a single commit,
which is then appended to the current
branch as a "merge commit". This can
simplify the branch history. The only
difference between squash merge and
common merge lies in the
commitment history. For common
merge, the merge commitment on the
current branch usually has two commit
records, while squash merge has only
one commit record.

Configuring Project-Level Member Sync

On the project homepage, choose Code > Repo, and choose Settings > Security
Settings > Member Sync.

After Sync Project Members is enabled, select the roles to be synced. Selected
project members will be synced to the repo and repo group. The project manager
will always be synced regardless of the toggle. Click the refresh button to sync all
the current settings.

Adding, deleting, or modifying a project member will be automatically synced.

Sync Project Members is disabled for historical projects but enabled for new
projects, and the Project manager, Committer, and Developer are selected by
default.

16.2 Configuring Project-Level Repo Settings

On the CodeArts Repo homepage, go to the project homepage and choose
Settings > Policy Settings > Repository Settings. For details about how to set the
parameters, see Table 16-7.

Table 16-7 Project-level parameters

Parameter Description

Force inherit Optional. Once selected, all repo
groups and code repos in the project
use the following settings and cannot
be changed. Exercise caution when
selecting this option.

Do not fork a repository Optional. Once selected, no one can
fork the repo in the project.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

CodeArts Repo

User Guide 16 Creating and Configuring a CodeArts Project
Parameter Description
Pre-merge Optional. Once this is selected, the

server automatically generates the
pre-merge code of the MR. Compared
with running commands on the client,
this operation is more efficient and
simple, and the build result is more
accurate. This option applies to
scenarios that have strict requirements
on real-time build.

Branch Name Rule

Optional. All branch names must
match the regular expression with
max. 500 characters. If this field is left
blank, any branch name is allowed.
The rules must meet the following tag
naming rules:

e Max. 500 characters.

e Do not start with refs/heads/refs/
remotes/ or end with . / .lock.
Spaces and the following characters
are not supported:. [\ <~A:?2 ()"'"

Tag Name Rule

Optional. All tag names must match
the regular expression specified by this
parameter. If this field is left blank, any
tag name is allowed. The basic tag
naming rules must be met.

e Max. 500 characters.

e Do not start with refs/heads/refs/
remotes/ or end with . / .lock.
Spaces and the following characters
are not supported:. [\ <~A:?2 ()"'"

Configuring Project-Level Protected Branch Rules

CodeArts Repo makes code branches more secure by preventing anyone other
than the administrator from committing code, preventing anyone from forcibly
committing code, or from deleting the branch. You can set this branch to be
protected. The procedure is as follows: On the CodeArts Repo homepage, go to
the project homepage, choose Settings > Policy Settings > Protected Branch,
click Create Protected Branch, and set parameters as follows.

Step 1 Enter a branch name. This parameter is mandatory. Enter a complete branch
name or a branch name with wildcard characters. If a branch contains a single
slash (/), the branch cannot be matched using the wildcard * due to the fnmatch

syntax rule.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

CodeArts Repo
User Guide 16 Creating and Configuring a CodeArts Project

Step 2 You can set the push or merge permission for the administrator/project manager,
committer, and developer. These two permissions cannot be granted at the same
time because the protected branch cannot be forcibly pushed or merged into the
code. You can create, edit, and delete protected branches in batches.

--—-End

If you want all repo groups and repo in this project to use the preceding settings,
select Force Inherit.

Configuring Project-Level Commit Rules

CodeArts Repo supports verification and restriction rules for high-quality code
commits. On the CodeArts Repo homepage, go to the project homepage, choose
Settings > Policy Settings > Commit Rules, and click Create Commit Rule. For
details, see Table 16-8.

Table 16-8 Parameters for project-level commit rules

Parameter Description
Rule Name Mandatory. Custom rule name.
Branch Enter a complete rule name or create

a regular expression. This parameter is
mandatory. The input needs to be
verified, including the branch name
and regular expression.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Parameter

Description

Commit Rules

Optional.

e Commit Message Match: This
parameter is empty by default. If
left blank, all messages can be
committed. Every commit message
that matches the regex can be
committed. You can also set that
the committed information must
contain the work item number to
implement E2E code tracing with
max. 500 characters.

¢ Commit Message Negative Match:
This parameter is empty by default.
If left blank, all messages can be
committed. Every commit message
that matches the regex provided in
it, will be rejected with max. 500
characters.

e Commit Author: This parameter is
left empty by default, indicating
that the commit author is not
verified, and any parameter can be
committed. This field supports a
maximum of 200 characters.

The commit author can run the git
config -l command to view the
value of user.name and run the git
config --global user.name
command to set the value of
user.name.

Example:

Rules for setting the commit author: ([a-z][A-
Z]{3})([0-91{1,9})

e Commit Author's Email: This
parameter is left empty by default,
indicating that the commit author
email is not verified, and any
parameter can be committed. This
field supports a maximum of 200
characters.

The commit author can run the git
config -l command to view the
value of user.email and run the git
config --global user.email
command to set the email address.

Example:
Commit author's email: @my-company.com$

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Parameter

Description

Basic Attributes

Parameters in this area are optional.

e File Name That Cannot Be
Changed: This parameter is left
empty by default, indicating that a
file with any name can be
committed. You are advised to use
standard regular expressions to
match the file name. By default, the
file path is verified based on the file
name rule. This field supports a
maximum of 2,000 characters.

Example:
File name that cannot be changed: (\.jar|\.exe)
$

e Each File Size (MB): The default
value is 50, indicating that the push
is rejected if the size of the added
or updated file exceeds 50 MB.

NOTE

When a repository is created, the max. size
of a single file in the default commit rule is

50 MB for recommendation. The max. file
size is 200 MB.

Binary Rules

Optional.

This is not selected by default. Do not
allow new binary files (privileged
users excepted) is selected by default.
After Allow changes to binary files is
selected, binary files in the modify
state will not be intercepted and can
be directly uploaded. Binary files can
be deleted without binary check.

e Do not allow new binary files
(privileged users excepted)

e Allow changes to binary files
(privileged users excepted)

e Repo File Whitelist (files that can
be directly imported to the
database. This field supports a
maximum of 2,000 characters.)

e Privileged Users (Max. 50
privileged users.)

NOTE
If the privileged user is not a repository
member, the system displays a message
indicating that the privileged user fails
to be verified when you click Save. In
this case, remove the privileged user to
save the information.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Parameter Description

Effective Date Optional.

Before being committed, all commits
created after the effective date must
match the hook settings. If this

parameter is left empty, all commits

date.

are checked regardless of the commit

Table 16-9 Examples of common regular expressions

Rule Examples
Single a, b, or c [abc]
Characters other than a, b, or c [Aabc]
Lowercase letters ranging from a to z [a-z]
Characters other than the range of a to z [Na-z]
Uppercase and lowercase letters in the range of a [a-zA-Z]
tozorAtoZ

Any single character

Either a or b alb
Any blank character \s
Non-blank character \S
Arabic numeral character \d
Non-Arabic numeral characters \D
Letters, digits, or underscores (_) \w
Characters other than letters, digits, or underscores | \W

(-

Match the content in parentheses (not capture) (?:..)
Match and capture the content in parentheses (...)
No or one a a?

No or more a's a*
One or more a's a+
Three a's a{3}
More than three a's a{3}
3to6a's a{3,6}

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

120

CodeArts Repo

User Guide 16 Creating and Configuring a CodeArts Project

Rule Examples

Beginning of text A

End of text $

Word boundary \b

Non-word boundary \B

Line breaker \n

Carriage return character \r

Tab key \t

Null string \O

Configuring Project-Level Merge Request Rules

A merge request rule consists of three parts: merge mechanism, merge condition,
MR setting, and merge method.

Table 16-10 Parameters of the merge mechanism

Parameter Description

Merge Mechanism Mandatory. There are two options.

e Score: Code review is included. You
can set minimum merge score and
the score ranges from 0 to 5. The
code can be merged only when the
score and mandatory review meet
pass conditions. Set a minimum
score when using this mechanism.

e Approval: It consists of code review
and merge approval. Code can be
merged only after the number of
reviewers reaches gate
requirements.

NOTE

e By default, Approval is used. You
can manually switch to Score.

e After the merge mechanism is
changed, the workflows of the MRs
are changed. However, the early
created MRs retain the previous
merge mechanism.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Table 16-11 Parameters of merge conditions

Parameter

Description

Merge Conditions

Optional. The options are as follows:

e Select Only when all reviews and
comments are resolved. If Must
resolve is selected, Review
comment gate: failed will be
displayed and the Merge button is
dimmed. If it is only a common
review comment, the Resolved
button does not exist, and the
comment will not be intercepted by
the merge condition.

e If you select Only when associated
with CodeArts Req, all associated
E2E ticket numbers must pass the
verification. One MR can be
associated with only one ticket
number. You can add multiple
branches to configure the merge
request policy. You can manually
enter wildcard characters, for
example, *-stable or production/*,
and press Enter to confirm.

Table 16-12 MR setting parameters

Parameter

Description

Do not merge your own requests

After this parameter is selected, the
Merge button is unavailable when you
view the MRs created by yourself. You
need to ask the person who has the
permission to merge the MRs.

Do not approve your own requests

If you select this parameter, the
Approve button is dimmed and you
cannot approve your own MRs. You
need to ask another person with the
approve permission to approve your
MRs.

Do not review your own requests

If you select this parameter, the
Review button is dimmed and you
cannot review your own MRs. You
need to ask another person with the
approve permission to approve your
MRs.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

122

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Parameter

Description

A repo administrator can force merge
code

The project creator and administrator
roles have the permission to forcibly
merge MRs. If the merging conditions
are not met, these roles can click
Force Merge to merge MRs.

Allow code review and comment for
merged or closed MRs

After this parameter is selected, you
can continue to review and comment
on the merged MR.

Mark the automatically merged MRs
as Closed (If all commits in the B MR
are included in the A MR, the B MR is
automatically merged after the A MR
is merged. By default, the B MR is
marked as merged. You can use this
parameter to mark the B MR as
closed.)

e If this parameter is not selected,
automatically merged MRs are
marked as merged.

e If this parameter is selected, MRs
that are automatically merged are
marked as closed.

Cannot re-open a Closed MR

If this option is selected, the branch
merge request cannot be set back to
Open after it is closed. Re-open in the
upper right corner is hidden.

This parameter is used for process
control to prevent review history from
being tampered with.

Delete source branch by default after
the MR is merged

After the merge, the source branch is
deleted.

e A protected source branch cannot
be deleted.

e This setting does not take effect for
historical MRs. Therefore, you do
not need to worry about branch
loss.

Do not Squash

After this parameter is selected, the
Squash button is unavailable, and the
entry for using this button is
unavailable in the MR.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

CodeArts Repo

User Guide 16 Creating and Configuring a CodeArts Project
Parameter Description
Enable Squash merge for new MRs When squash merge in Git, all changes

from the branch being merged are
"squashed" into a single commit,
which is then appended to the current
branch as a "merge commit". This can
simplify the branch history. The only
difference between squash merge and
common merge lies in the
commitment history. For common
merge, the merge commitment on the
current branch usually has two commit
records, while squash merge has only
one commit record.

Configuring Project-Level Member Sync

On the project homepage, choose Code > Repo, and choose Settings > Security
Settings > Member Sync.

After Sync Project Members is enabled, select the roles to be synced. Selected
project members will be synced to the repo and repo group. The project manager
will always be synced regardless of the toggle. Click the refresh button to sync all
the current settings.

Adding, deleting, or modifying a project member will be automatically synced.

Sync Project Members is disabled for historical projects but enabled for new
projects, and the Project manager, Committer, and Developer are selected by
default.

16.3 E2E Settings

Repo uses this E2E tracing setting to log code merge reasons, such as
implementing a requirement, fixing a bug, or completing a work item. Association
is enabled by default.

Integrated Systems

It integrates with CodeArts Req and uses work items in CodeArts Req to associate
with code commits.

(11 NOTE

The repositories of Kanban projects do not support E2E settings.

Integration Policies

(Optional) Specify available selection conditions when you associate with a work
item.

Excluded States: States of work items that CANNOT be associated with.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

CodeArts Repo
User Guide 16 Creating and Configuring a CodeArts Project

Associable Types: Types of work items that can be associated with.

Applicable Branches: Branches to comply with preceding restrictions.

Automatic ID Rules Extraction

Automatic ID extraction rules (automatically extracting ticket numbers based on
code commitment information) are as follows:

e ID Prefix: (Optional) A maximum of 10 prefixes are supported, for example,
[Trouble ticket number or Requirement ticket number].

(10 NOTE

If ID Prefix, Separator, and ID Suffix are not empty, the automatic ticket number
extraction function is enabled by default.

e Separator: (Optional) The default value is a semicolon (;).

e ID Suffix: (Optional) The default value is a newline character.

(11 NOTE

e The values of ID Prefix, Separator, and ID Suffix cannot be the same.

e If Separator is left empty, the values of ID Prefix and ID Suffix cannot be two
semicolons (;;).

e If ID Suffix is left empty, the values of ID Prefix and Separator cannot be \n.

e The values of ID Prefix, Separator, and ID Suffix are matched in full character
mode. Regular expressions are not supported.

Examples

Step 1 Configure E2E settings.

1. Go to the target repository.

2. Choose Settings > Service Integration > E2E Settings. The E2E Settings
page is displayed.

EHome <»Code {)MergeRequests 1 (GReviews [Associated Workltems ¢ Repository Statistics i Activities & Members | &} Seftings

E2E Settings

General Settings
Repo uses this E2E tracing setting to log code merge reasons, such as implementing a requirement, fixing & bug, or completing a work item. Re

Repositery Management v llems

Policy Settings « Integrated Systems

| Service Integration - (:
| E2E Settings
Webhooks CodeArts Req

v Use work items in CodeArts Req

3. Configure the following integration policies and click Submit.
Applicable Branches: Select the target branch, for example, branch.

ID Prefix: user-defined prefix, for example, Incorporated requirements.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

CodeArts Repo
User Guide 16 Creating and Configuring a CodeArts Project

Integration Policies

Excluded States States of work items that CANNOT be associated with
Associable Types Types of work items that can be associated with. e g Story/Task/Bug

Applicable Branches Branches to comply with preceding restrictions

branch

Automatic ID Rules Extraction
1D Prefix Separator 1D Suffix

Incorporated requirements

Submit Save and Enable

Step 2 Create a work item.

1. Click the target project name to access the project.

2. On the current Work Items tab, click Create Work Item and choose Task
from the drop-down list box. The page for creating a work item is displayed.

Work ltems Sprints Statistics Reports

Backlog Bug =+ Create Work Item All wo

Id Subjs¢

Epic
Feature

Story

Task

Bug

3. Enter a title, for example, Sprint 1.
Retain the default values for other parameters. Click Save.

Plans Work ltems Sprints Statistics Reports

All ~ Backlog Bug + Create Work ltem All work items = Q Tracker Epic |

Id Subject Closed On Status

I 708635317 Iteration 1 - New

Step 3 Create a File.

1. Go to the repository list page and click the name of the target repository.

2. On the Code tab, click Create and choose Create File from the drop-down list
box. The page for creating a file is displayed.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

CodeArts Repo
User Guide 16 Creating and Configuring a CodeArts Project

[Home «¢»Code | 7 Merge Requests 0 (: Reviews (3 Associated

0.11 MB Files <1 Commits P 1Branches ©0Tags 1.1 Comparison
master
Q
IEf | (3 Creaie File
com
c 3 Create DITEC'[OF‘-.I'
-] .gitignore N {§ Create Submodule
-] g
M} README.md & Upload File
Mi R

build.xm

3. Enter the following information, retain the default values for other
parameters, and click OK.

File name: user-defined file name, for example, Sample_Code.
File content: user-defined file content.

Commit message: Enter the prefix and work item number in the E2E settings,
for example, 708635317.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

CodeArts Repo

User Guide 16 Creating and Configuring a CodeArts Project
Creats File
Sample_Code Empty file (no template) v fed hased

1 <project nane="javahntDeno" basedir="." default="nain"s
1 <property envirament="emy" />
3 <oraperty nane="src.dir" value="can"f>
4
5 <property nane="build.dir" velue="build"/>
6 <praperty nane="classes. dir" value="${build. dir}/classes" >

(praperty nane="Jar.dir" value="${build.dir}/far">
8 <property name="report.dir" value="${build. dir}/junitreport’ />
g ctaskdef nane="findougs" classnane="edu.und, s, findougs anttask. FindBugsTask"/>

2 <path id="application” locatlon="§{jar.dir}/${ant.project.nane}. ar" />

1 <property name="nain-class" value="con.gdd.hellokorld" />

138 ctanget names"clean">
19 «delete dir="${build.dir}'/>
L] ([tanget>

Commit Message
Incorporated requirements 708635317 Tip
You can Use keywords ‘", "ied", "resoive", "resolved, and "close" o associate the fle with

You can add 1965 more chaaclers. awork ftem inthe project For example, " #R20230202018492 fx a bug.

n Cancel

Step 4 Extract the ticket number when creating a merge request.

Switch to the Merge Requests tab and click New.

2. Select Dev as the source branch and master as the target branch, and click
Next. The page for creating a merge request is displayed.

At this point, the work item is automatically extracted to the merge request.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Create Merge Request

From Scrumo0girepo Dev into Scrumoosirepo master

+Title Mergers

Add [WIP] to the title, to prevent a Work In Progress (WIP) merge request from being merged before it is ready Reviewers

Description
Approvers
©« 2 HB = E @@ GBe@1Nn G FEED Settings

Delete source branch after merge
Squash

Tip
Directly edit a work item in the associated work item. You can also use keywords fix, fixed, resolve, resolved, and close plus a
number sign (%) in the description to associate with a work item. For example, fix #1R20230202018492 fix a bug
To set work item status and transition, go to " automatic transition ", To set E2E tracing for integration, go to " E2E Seitings "

d Work ltems

[}
(]
&

Iteration 1 New &

--—-End

16.4 Webhook Settings

Configuring Webhook Settings

Developers can configure URLs of third-party systems on the Webhook page and
subscribe to events such as branch push and tag push of CodeArts Repo based on
project requirements. When a subscription event occurs, you can use a webhook to
send a POST request to the URL of a third-party system to trigger operations
related to your system (third-party system), such as popping up a notification
window, building or updating images, or performing deployment.

To configure webhooks, you can choose Settings > Service Integration >
Webhooks on the repository details page.

The settings take effect only for the repository configured. Members within the
repo can view this page.

Table 16-13 Parameters for creating a webhook

Param | Description
eter

Name | Custom name.

Descri | Description of the webhook.
ption

URL Mandatory. Provided by the third-party Cl/CD system.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

CodeArts Repo
User Guide

16 Creating and Configuring a CodeArts Project

Param
eter

Description

Token
Type

Used for webhook interface authentication of third-party services. The
options are as follows:

e X-Repo-Token
e X-Gitlab-Token
e X-Auth-Token

Token

Used for third-party Cl/CD system authentication. The authentication
information is stored in the HTTP request header.

Trigger
Events

The system can subscribe to the following events:
e Code push

- If Code push is selected, Regular Expression for Branch
Filtering is displayed.
NOTE

Regular Expression for Branch Filtering: The default value is .*,
indicating that all branches are matched. Max. 500 characters.

The regular expression for branch filtering must comply with the regular
expression.
- This event is triggered when code is updated in CodeArts Repo,
such as code update in LFS files or submodules, and code pushed
online or on a local Git client.

e Tag push
This event is triggered when a tag is created or deleted.

e Merge requests
- This event is triggered when a merge request is created.

- This event is triggered when a merge request is updated. For
example, when someone updates the code content, merge
request status (closed or re-opened), merge request title or
description, merger, and work items, deletes the source branch,
and updates the squash.

- This event is triggered when a request is merged.
e Comments

- This event is triggered when a review comment is added. For
example, add a review for a file on the Files and Commits
submenus of the Code tab page, or on the Files Changed
submenu of the Merge Requests tab page.

- This event is triggered when a comment is added on the
Commits details page or on the Details page of Merge
Requests tab page.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

CodeArts Repo
User Guide 16 Creating and Configuring a CodeArts Project

(11 NOTE

e A maximum of 20 webhooks can be created for a repository.

e You can configure a token when setting up a webhook. The token will be associated
with the webhook URL and sent to you in the X-Repo-Token header.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

CodeArts Repo 17 Committing Code to CodeArts Repo and Creating
User Guide a Merge Request

1 7 Committing Code to CodeArts Repo
and Creating a Merge Request

17.1 Setting Repo-Level Merge Request Rules

The MR configuration refers to the configuration of code merge conditions and
modes in MR mode. Project-level MR rules can be inherited to the repos and repo
groups.

You can select Inherit from project. The settings in the project are automatically
inherited and cannot be changed. You can also access the repo homepage of the
code to be configured and choose Settings > Policy Settings > Merge Requests.
There are two MR mechanisms: score and approval. The differences between the
two mechanisms are as follows:

e Scoring mechanism: This mode includes only code review and is based on
scoring. Code can be merged only when the score meets the gate conditions.

e The approval method consists of code review and merge approval. Code can
be merged only after the number of reviewers and approvers reaches gate
requirements.

After selecting a mechanism, set other parameters by referring to the
following table. The configuration takes effect for the entire code repo.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

CodeArts Repo 17 Committing Code to CodeArts Repo and Creating
User Guide a Merge Request

Table 17-1 Parameters for setting the merge condition and mode

Parameter Description

Merge Conditions Optional. There are two options:

e Merge after all reviews are
resolved. After this parameter is
selected, if Must resolve is
selected as the review comment,
a message Review comment
gate: failed is displayed and the
Merge button is unavailable. If it
is a common review comment,
the Resolved button does not
exist, the MR is not intercepted
by the merge condition.

e Must be associated with CodeArts
Req The options are as follows:

1. Associate only 1 ticket number.
After this option is selected,
one MR can be associated
with only one ticket number.

2. All E2E ticket numbers pass
verification After this option is
selected, all associated E2E
ticket numbers must pass the
verification.

3. Branches to configure the MR
policy: You can add multiple
branches to configure the
merge request policy. You can
manually enter wildcard
characters (for example, *-
stable or production/*), and
press Enter.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

CodeArts Repo
User Guide

17 Committing Code to CodeArts Repo and Creating
a Merge Request

Parameter

Description

MR Settings

Optional. Options:

e Do not merge your own requests
After this parameter is selected,
the Merge button is unavailable
when you view the MRs created
by yourself. You need to ask the
person who has the permission to
merge the MRs.

e Do not approve your own
requests

e Do not review your own requests

e A repo administrator or project
manager can force merge code

e Allow code review and comment
for merged or closed MRs

e Mark the automatically merged
MRs as Closed If all commits in
MR A are included in MR A, MR B
is automatically merged after MR
A is merged. By default, the B MR
is marked as merged. You can
use this parameter to mark the B
MR as closed.)

e Cannot re-open a Closed MR This
function is enabled by default.
You can enable or disable it as
required.

e Enable "Delete source branch
after merged" when creating MRs

e Forbid squash merge (Forbid to
select squash merge when create
merge request)

e Enable Squash merge for new
MRs

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

CodeArts Repo
User Guide

17 Committing Code to CodeArts Repo and Creating

a Merge Request

Parameter

Description

Merge Method

Mandatory. The options are as
follows:

e Merge commit If this parameter
is selected, a merge commit is
created for every merge, and
merging is allowed as long as
there are no conflicts. That is, no
matter whether the baseline
node is the latest node, the
baseline node can be merged if
there is no conflict.

- Do not generate Merge
nodes during Squash merge:
If this parameter is selected,
no merge node is generated
during the squash merging.

- Use MR merger to generate
Merge Commit: If this
parameter is selected, the
commit information is
recorded.

Use MR creator to generate
Merge Commit: If this
parameter is selected, the
commit information is
recorded.

e Merge commit with semi-linear
history. If this parameter is
selected, a merge commit is
recorded for each merge
operation. However, different
from Merge commit, the
commitment must be performed
based on the latest commit node
of the target branch. Otherwise,
the system prompts the
developer to perform the rebase
operation. In this merging mode,
if the MR can be correctly
constructed, the target branch
can be correctly constructed after
the merge is complete.

e Fast-forward If this parameter is
selected, no merge commits are
created and all merges are fast-
forwarded, which means that
merging is only allowed if the
branch could be fast-forwarded.
When fast-forward merge is not

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd.

135

CodeArts Repo
User Guide

17 Committing Code to CodeArts Repo and Creating
a Merge Request

Parameter

Description

possible, the user is given the
option to rebase.

Configure Branch Policy

If you select the Approval mechanism as the Merge Mechanism and want to
configure a merge policy for a branch, go to the repo homepage to be configured,
choose Settings > Policy Settings > Merge Requests, click Create Branch Policy,
and set parameters by referring to the following table.

Click Create Branch Policy to set a merge policy for a specified branch or all

branches in the repository.

Table 17-2 Parameters for creating a branch policy

Parameter

Description

Branch

Mandatory. Select a branch from the drop-down list.
You can select all branches.

Reviewers Required

Mandatory. The default value is 0, indicating that the
review gate can be passed without being reviewed by
the reviewer.

Approvals Required

Mandatory. The default value is 0, indicating that the
approval gate can be passed without being approved
by the approver.

Reset approval gate

Optional. This option is selected by default,
indicating that MR approval gate is reset when code
is re-pushed to the source branch of the MR.

Reset review gate

Optional. This option is selected by default,
indicating that the MR review gate is reset when
code is re-pushed to the source branch of the MR.

Add approvers/reviewers
only from the following
ones

Optional. If this option is selected, you can configure
the list of New Approvers and New Reviewers. If
you want to add additional members, you can only
add members from the lists.

Enable pipeline gate

Optional. If this option is selected, before the merge,
you need to pass all pipeline gates. This rule
integrates the Cl into the code development process.

Mergers Optional. The list of mandatory mergers can be
configured. When a merge request is created, the list
is automatically synchronized to the merge request.

Approvers Optional. The list of mandatory approvers can be

configured. When a merge request is created, the list
is automatically synchronized to the merge request.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

136

CodeArts Repo
User Guide

17 Committing Code to CodeArts Repo and Creating
a Merge Request

Parameter Description

Reviewer Optional. The list of mandatory reviewers can be

configured. When a merge request is created, the list
is automatically synchronized to the merge request.

(11 NOTE

The following is an example of the branch policy priority:

Assume that there are policies A and B in the repository and their branches are the
same. The system uses the latest branch policy by default.

Assume that there are policies A and B in the repository. Branch a and branch b are
configured for policy A, and branch a is also configured for policy B. When a merge
request whose target branch is branch a is committed, the system uses policy B by
default.

If no branch policy is set in the approval mechanism, the default branch policy is used when
a merge request is committed. The branch policy can be edited and viewed but cannot be
deleted. The policy configuration is as follows:

Branches: *. By default, all branches are used and cannot be modified.
Reviewers Required: The default value is 0.

Approvals Required: The default value is 0.

Reset approval gate: This option is selected by default.

Reset review gate: This option is selected by default.

Add approvers/reviewers only from the following ones: This option is not selected by
default.

Enable pipeline gate: This option is not selected by default.
Mergers: This parameter is left blank by default.
Approvers: This parameter is left blank by default.
Reviewer: This parameter is left blank by default.

Example of a mandatory reviewer list:

e The Reviewers Required is 2. If the list of mandatory reviewers is empty, the 2
approvers in the list of New Reviewers give pass and the gate is passed.

e The Reviewers Required is 2. If the list of mandatory reviewers is not empty, the
gate can be approved only after at least one reviewer in the list give pass.

17.2 Configuring Merge Request Notifications

You can push notifications about repositories and merge requests through emails
or WeCom, and enable either or both of these two modes as needed. Repository
members can view this page. Only roles with the Set permission can set repository
notifications.

e For details about how to configure email notifications, see Configuring Email
Notifications.

e For details about how to configure WeCom notifications for repositories, see
Table 17-4.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

CodeArts Repo 17 Committing Code to CodeArts Repo and Creating
User Guide a Merge Request

Configuring Email Notifications

Table 17-3 Parameters for email notifications

Parameter Description

Repository Optional. Set the email notification
you want to receive. Four options are
available. By default, Freeze Repo and
Close Repo are selected and cannot be
changed. If a repo is frozen or closed,
an email will be sent to the repo
owner and project administrator. The
other two options are as follows, and
you can select when to receive email
notifications:

e Delete Repo: When a member
deletes the repository.

e Capacity Warning: When the
capacity usage exceeds the
threshold. You can select 60%, 80%,
or 90% from the drop-down list.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

CodeArts Repo 17 Committing Code to CodeArts Repo and Creating
User Guide a Merge Request

Parameter Description

Merge Request Optional. You can select the following
options as needed.

e Open: When a merge request is
created or re-created, an email will
be sent to the selected roles. By
default, the following roles are
selected: Scorer, Approver,
Reviewer, and Merger.

e Update: When the code of the
branch associated with the merge
request is updated, an update email
is pushed. The following roles are
selected by default: Scorer,
Approver, and Reviewer.

e Merge: An email will be pushed
when a merge request is
committed. The MR creator is
selected by default. You can also
select Merger.

e Review: An email will be sent to
notify the merge request review.
The MR creator is selected by
default.

e Approve: An email will be sent to
notify the merge request approval.
The MR creator is selected by
default.

e Comment: The email of new review
comments will be sent to the
selected role. The MR creator is
selected by default.

e Resolve Comment: An email will
be sent to the selected role to
resolve the review comments. The
MR creator is selected by default.

(11 NOTE

If you have enabled the email notification in CodeArts Repo but cannot receive any email
notification, go to CodeArts notifications to check whether the email configuration and
email notification are enabled.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

https://auth.huaweicloud.com/authui/login.html?service=https%3A%2F%2Fdevcloud.cn-north-4.huaweicloud.com%2Fworkspace%2Fmsgset#/login

CodeArts Repo
User Guide

17 Committing Code to CodeArts Repo and Creating

a Merge Request

Configuring WeCom Notification Settings for the Repository

Table 17-4 Parameters for setting WeCom notifications

Parameter

Description

Webhook URL

Mandatory. Used to identify webhook
address of the robot added to the
CodeArts Repo member group with a
maximum of 500 characters.

Repository

Optional. Select the following two
options based on your need. By
default, the following two options are
selected. You can also select the email
recipients.

e Delete Repo: When a member
deletes the repository.

e Capacity Warning: When the
capacity usage exceeds the
threshold. You can select 60%, 80%,
or 90% from the drop-down list.

Merge Request

Optional. You can select the following
options as needed.

e Status Change Notifications are
pushed through the WeCom bot
when the MR is opened, updated,
or merged. By default, the following
options are selected: Open and
Merge.

e Review and Approval: You can
select Review or Approve.

e Review Comments: By default,
Comment is selected. You can also
select Resolved comment.

17.3 Resolving Review Comments and Merging Code

Passing the Review Comment Gate

If the merge request gate is enabled for the target repository, the Only when all
reviews and comments are resolved option is selected. The reviewers or
approvers can move the cursor to the code line to which the review comment is to
be added in Files Changed of the Merge Requests tab and click the & icon to
add reviews. Alternatively, the reviewers or approvers can directly add comments
in Details > Comments of the Merge Requests.

After you resolve the review comments, on the Details > Review Comments page
of the merge request, the review comment status changes from Unresolved to

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

CodeArts Repo
User Guide

17 Committing Code to CodeArts Repo and Creating
a Merge Request

Pipeline Gate

Step 1

Step 2

Step 3

Step 4

Step 5
Step 6

Resolved. Review comment gate: Passed is displayed, indicating that the merge
request initiator has resolved all review comments and can merge the MR.

If CodeArts Pipeline gates are enabled for the target repository, select Enable
pipeline gate. Perform the following steps:

Go to the target repo homepage. In the navigation pane on the left, choose CICD
> Pipeline.

Click Create Pipeline, enter the following information, click Next, and select the
target template.

e Name: Enter a custom name.

e Pipeline Source: Select Repo.

e Repository: Select the target code repository for which you want to create a
merge request.

Default Branch: Select the target branch of the merge request.

After a task is created, the system automatically switches to the Task
Orchestration tab page. Click More and select Execution Plan.

Enable Merge Request and select one of the following trigger events based on
your needs:

e Create: triggered when an MR is created.

e Update: triggered when the content or setting of an MR is updated.

e Merge: triggered when an MR is merged. The code commit event will also be
triggered.

e Reopen: triggered upon MR reopening.
Configure other information about the pipeline task and click Save and Execute.

Return to CodeArts Repo and wait for the event selected in Execution Plan to be
triggered for the repository to execute the CodeArts Pipeline task.

--—-End

Go to the merge request details page. If the message Merge into pipeline gate:
passed is displayed, the latest commit or pre-merge commit successfully starts the
pipeline.

Associating Gate Control by E2E Ticket Number

Step 1

Step 2

If E2E ticket number association is enabled for the target repository, select Must
be associated with CodeArts Req. Perform the following steps to associate the
E2E ticket number:

Go to the target repo, switch to the Merge Requests tab page, and click a target
merge request name to access it.

On the Details page, click the < icon next to Associated Work Items to search
for and select the target work item.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

CodeArts Repo 17 Committing Code to CodeArts Repo and Creating
User Guide a Merge Request

Step 3 Click OK. The E2E ticket number is associated.
----End

When the merge request is successfully associated with a work item, E2E ticket
number associated is displayed.

(11 NOTE

e If the system displays a message indicating that the capacity of a single repository
exceeds 2 GB and the merge is not allowed, check whether there are Git commit cache
files submitted.

e A maximum of 100 work items can be associated with an MR.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

CodeArts Repo
User Guide 18 Managing Merge Requests

1 8 Managing Merge Requests

18.1 Detailed Description of Review Comments Gate

Opening/Closing the Gate

Step 1 Go to the target repository and choose Settings > Policy Settings > Merge
Requests.

Step 2 Configure the gate.

e Select Merge after all reviews are resolved and click Submit to save the
settings. The access control is enabled.

e Deselect Merge after all reviews are resolved and click Submit to save the
settings. The access control is closed.

--—-End

Effect of Gate Triggering

The reviewers or approvers can move the cursor to the code line in Files Changed
of the Merge Request and click the ~ icon to add review comments.
Alternatively, the reviewers or approvers can directly add review comments in
Details > Comments of the Merge Request.

e Review comment gate: passed: It is displayed when there is no review
comments in the merge request, or all review comments do not need to be
resolved or have been resolved.

E Review comment gate: passed

e Review comment gate: failed: It is displayed when the review comments in
the Merge request are not resolved.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

CodeArts Repo
User Guide 18 Managing Merge Requests

Passing of the Gate

After you have resolved the issue raised in the review comments, you can switch
the status of the review comments from Unresolved to Resolved in Details >
Review Comments of the Merge Request. In this case, the status of the review
comments is displayed as Review comment gate: passed.

Comments Activities Comments resolved 0/0 Unresolved only My comments only <Show All

SEREEES - Jun 25, 2023 11:32:26 GMT+08:00

Code writing is not standard

18.2 Resolving Code Conflicts in an MR

When using CodeArts Repo, you may encounter the situation where two members
in the same team modify a file at the same time. Code fails to be pushed to a
CodeArts Repo repository due to the code commit conflict. The following figure
shows a push failure caused by the file change conflict in the local and remote
repositories.

(11 NOTE

e The returned messages vary depending on Git versions and compilers but have the
same meaning.

e The information similar to "push failure" and "another repository member" in the
returned message indicates that there is a commit conflict.

e Git automatically merges changes in different lines of the same file. A conflict occurs
only when the same line of the same file is modified (the current version of the local
repository is different from that of the remote repository).

e Conflicts may occur during branch merge. The locating method and solution are
basically the same as those for the conflict during the commit to the remote repository.
The following figure shows that a conflict occurs when the local branch1 is merged into

the master branch (due to the changes in the file01 file).

merge bran
rging f

in filedl
nd then commit the result.

e Max. 50 conflict files can be solved, and the size of a single conflict file cannot exceed
200 KB.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

CodeArts Repo
User Guide 18 Managing Merge Requests

Resolving a Code Commit Conflict

To resolve a code commit conflict, pull the remote repository to the working
directory in the local repository. Git will merge the changes and display the
conflict file content that cannot be merged. Then, modify the conflicting content
and push it to the remote repository again (by running the add, commit, and
push commands in sequence).

The following figure shows that there is a file merge conflict when you run the
pull command.

$ git pull

J: Merge
rge Tailed; 11

Modify the conflict file carefully. If necessary, negotiate with the other member to
resolve the conflict and avoid overwriting the code of other members by mistake.

(11 NOTE

The git pull command combines git fetch and git merge. The following describes the
operations in detail.

git fetch origin master # Pull the latest content from the master branch of the remote host.
git merge FETCH_HEAD # Merge the latest content into the current branch.

During merge, a message indicating that the merge fails due to a conflict is displayed.

Example: Conflict Generation and Resolution

The following shows an example to help you understand how a conflict is
generated and resolved.

A company uses CodeArts Repo and Git to manage a project. A function (the
file01 file is modified) of the project is jointly developed by developer 1 (01_dev)
and developer 2 (02_dev). The two developers encounter the following situation.

1. file01 is stored in the remote repository. The following shows the file content.

file01
1 #Ffile81ALAAALMALALLNA
2 ##fileB2BEEEEEBBEBEE
3 #4#f11e83CCCCCCCCCCCC
4 ##f112840D000D0ODDODDD
5|

2. 01_dev modifies the second line of file01 in the local repository and
successfully pushes the file to the remote repository. The following shows the
file content in the local and remote repositories of 01_dev.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

CodeArts Repo
User Guide

18 Managing Merge Requests

fileD1
1 HF11eB1AAAALAALLALL
2 #Hmodify by 81 dew
3 #FHf11e83CCCCCCCCCCCC
4 ##f1le84D0DDDDDDODDD
5 ## add one line by 81 dev

02_dev also modifies the second line of file01 in the local repository. When
02_dev pushes the file to the remote repository, a conflict message is
displayed. The following shows the file content in the local repository of
02_dev, which is conflicting with that in the remote repository.

BHEf1le0l1AbbnAAAAANNS
#4 modify by 02 dev
BHf1le03CCCCC0000000
B#f11e04DDDDDDDDDDDN
add by 02 dev

02_dev pulls the code in the remote repository to the local repository, detects
the conflict starting from the second line of the file, and immediately contacts
01_dev to resolve the conflict.

We find that they both modified the second line and added content to the
last line, as shown in the following figure. Git identifies the content starting
from the second line as a conflict.

BHfi1e01ALAAARAANSAA
<< HEAD

i modifv by 0Z_dev |modify by 02_dev
WH£11e03CCCCCCCCCCCC
##1i1e0400DDDDDDDDDD
#H add by 02 dev

FRmodify by ULl _dev modify by 01_dev
##£11e03CCCCCCCCCCCT
##£11e0400DDDDDDDDDD _
add one line by 01 dev commit ID
DIV at5daac0d7230b2TRT

(10 NOTE

Git displays the changes made by the two developers and separates them using

e The content between <<<<<<<HEAD and ======= indicates the changes of the
local repository in the conflicting lines.

e The content between ======= and >>>>>>> indicates the changes of the remote
repository in the conflicting lines, that is, the pulled content.

e The content after >>>>>>> is the commit ID.

e Delete <<<<<<<HEAD, =======, >>>>>>>, and commit ID when resolving the
conflict.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

CodeArts Repo
User Guide 18 Managing Merge Requests

6. The two developers agree to retain all changes after discussion. After 02_dev
modifies the content, the modified and added lines are saved in the local
repository of 02_dev, as shown in the following figure.

HHf1le0lABANAARARAAN

B modifv by 02 _dev
HHmodifvy by 01 dev
BH£11e030000CCCCo000
##£11e0400DDDDDDDDDD

#H add by 02 _dev

add one line by 01 dev

7. 02_dev pushes the merged changes to the remote repository (by running add,
commit, and push commands in sequence). The following shows the file
content in the remote repository after a successful push. The conflict is
resolved.

fileO1

#FHf1le81AAAMAAALALLA

#t modify by 82 dev
#FHmodify by 81 dev
#Ffi1le83CCCCCCCCOCOl
##file84D0DDDODDDDDD

add by 82 dev

add one line by 81 dew

b I = L ¥ R R VR I o R]

(11 NOTE

In the preceding example, TXT files are used for demonstration. In the actual situation, the
conflict display varies in different text editors and Git plug-ins of programming tools.

Preventing a Conflict

Repository preprocessing before code development can prevent commit and
merge conflicts.

In Example: Conflict Generation and Resolution, 02_dev successfully resolves the
conflict in the commit to the remote repository. For 02_deyv, the latest code version
of the local repository is the same as that of the remote repository. For 01_deyv,
version differences still exist between the local and remote repository. A conflict
will occur when 01_dev pushes code to the local repository. The following
describes methods to resolve the conflict.

Method 1 (recommended for beginners):

If your local repository is not frequently updated, clone the remote repository to
the local repository to modify code locally, and commit the changes. This directly
resolves the version differences. However, if the repository is large and there are a
large number of update records, the clone process will be time-consuming.

Method 2:

If you modify the local repository every day, create a develop branch in the local
repository for code modification. When committing code to the remote repository,

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

CodeArts Repo
User Guide 18 Managing Merge Requests

switch to the master branch, pull the latest content of the master branch in the
remote repository to the local repository, merge the branches in the local
repository, and resolve the conflict. After the content is successfully merged into
the master branch, commit it to the remote repository.

Resolving a Merge Conflict

CodeArts Repo supports branch management. When branches are merged,
conflicts may occur. This case describes how to resolve a merge request conflict by
reproducing it.

Step 1 Create a repo named Demo_Test.

Step 2 Create a file named FileTest based on the master branch. The following figure
shows the content of the file.

Figure 18-1 Creating the FileTest file in the master branch

0.19 MB Files O B Commits % 4granches © 0Tags T} Comparison
master v [] Demo_Test / FileTest

[FileTest [Blame (2 History

images 1 AAA
2 BBB

SIG 3 ccc

.gitignore

FileTest

README.md

pom.xml

Step 3 Create the branch_test branch based on the master branch. In this case, the
content in the master branch is the same as that in the branch_test branch. The
following describes how to make the content of the two branches different.

Step 4 In the master branch, modify FileTest as shown in the following figure, and enter
the commit message Update FileTest in master.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

CodeArts Repo
User Guide 18 Managing Merge Requests

Figure 18-2 Modifying the FileTest file in the master branch

0.19 MB Files o B Commits & 4Branches & OTags 1.} Comparison
0 Demo Test / FileTest

FileTest [Blame (2 History 3lines 13 Bytes

images

1 AAA
2 | Modify in master
Sl 3 CcC
b5 .gitignore
[5 FileTest

M{ README.md

pom.xml

Step 5 Switch to the branch_test branch and modify the FileTest content, as shown in
the following figure. Fill in the commit information as Update FileTest in
branch_test. Now the content of the master branch is different from that of the
branch_test branch and this is when a code conflict occurs.

Figure 18-3 Modifying the FileTest file in the branch_test branch

0.24 MB Files O 7 Commits % 4Branches © 0Tags 7.l Comparison

branch_test v | [Demo_Test / FileTest
Q - .
FileTest [Blame (2 History
images 1 AAA
2 Modify in branch test
AlG 3 CcC
Y .gitignore
L5 FileTest

Mi README.md

pom.xml

Step 6 Switch to the branch_test branch, click Create Merge Request in the upper right
corner, and merge the branch_test branch into the master branch.

The Details page of the merge request is displayed as shown in the following
figure. Merge conflict: unresolved is displayed, and you are recommended to Fix
them online or offline.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

CodeArts Repo
User Guide 18 Managing Merge Requests

Figure 18-4 Creating a merge request

Update FileTest in branch_test

4 created at Nov 15, 2024 15:01:00 GMT+08:00 From branch_test into master the source branch is 1 commit behind the target branch

Details Commits 1 Files Changed 1 Pipeline

Description

merge "branch_test" into "master”
Update FileTest in branch_test

Merge Conditions

Fix them online or offline

Step 7 Perform the following operation to resolve the conflict:

e Resolving a conflict on CodeArts Repo (recommended for small code
volume)

a. Click Fix them online and the following page is displayed. To resolve the
conflict, select Apply to Source Branch or Apply to Target Branch. If
you select Apply to Source Branch, the content of the branch_test
branch is applied to the master branch. If you select Apply to Target
Branch, the content of the master branch is applied to the branch_test
branch.

< Details Conflicts: 1 Files: = Hide All
~ = FileTest
AAA

2 Modify in branch_test
Modify in master

ccc

Commit Message
To fix code conflicts online:

EEETEREEEEEURY | You can also edit files directly.F

cumentation

Cancel

b. If there are many conflicts, click to go to the page shown in the following
figure to edit or resolve them online. The lines where the <<<<, >>>>, and
==== signs are located display conflict and splitter which need to be
deleted when modifying the code to solve the conflict.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

CodeArts Repo
User Guide 18 Managing Merge Requests

Figure 18-5 Solving conflicts online

< Details Conflicts: 1 Files: 1 = Hide All

X FileTest o O |

AAA E
<4g88xg FileTest 1
Modify in branch_test

Modify in master
>3>>3>> FileTest 1
ccc

Nousuwn el <

Commit Message

To fix code conflicts online:

select [T o R ke - You can also edit files directly. For

details, see documentation

Cancel

e offline (recommended for large-scale projects)
Click offline and follow the prompted instructions as shown in the following

figure.
Switch, View, and Merge Branches Locally X

Step 1 Update the code and switch to this MR source branch

git fetch origin
zit checkout —b branch007 orizin/branch007

I Step 2 Merge the target branch into the source branch.
zit merge origin/master

Step 3 Manually resolve conflicts locally as prompted.

Step 4 Commit code to the remote end after conflicts are resolved.

git add .
git commit —m ' meszage’’

zit push origin branchO0T

i Step 5 Refresh the page and continug fo review the MR.

alimies pere G o

(11 NOTE

CodeArts Repo automatically generates Git commands based on your branch name. You
only need to copy the commands and run them in the local repository.

Step 8 Use either of the following methods to resolve the conflict. Click Merge to
merge the branches and the system displays a message indicating that the merge
is successful. There is no difference in the content of the branch_test source
branch and that of the master target branch.

--—-End

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

CodeArts Repo
User Guide 18 Managing Merge Requests

18.3 Creating a Squash Merge

Squash merge is to merge all change commit information of a merge request into
one to simplify the commit information. When you focus only on the current
commit progress rather than the commit information, you can use squash.

(11 NOTE

If Squash is selected, multiple consecutive change records of the source branch can be
merged into one commit record (information of Configure Squash), and this new commit
record can be committed to the target branch.

e If the change history of the merge request contains only one commit, the commit record
in the target branch is for the source branch after Squash is selected.

e If the change history of the merge request contains multiple commits, the commit
record in the target branch contains the information of Configure Squash after Squash
is selected.

To better understand this function, perform the following operations:
Step 1 Create a repo and a branch.

The repo name is repo, and the branch name is Dev.
Step 2 Dev branch: Create two files and name them Function_1 and Function_2.

Step 3 Check the effect before Squash is enabled. Click the Dev branch and choose Code
> Commits > Commits to view the commit information.

& Home 33 Merge Requests 1 @ Reviews B Associated Work tems 117 Repository Statistics = Activities & Members £ Settings
[0.07 MB Fiies w % 3 Branches > 0Tags 1 Comparison

Initial commit =]

Step 4 Create and merge a request.

1. Set the source branch to Dev and target branch to master. Create a merge
request.

Dev branch: Name the merge request as Squash, select Squash, and enter
Configure Squash.

Template Mergers V4
Reviewers Vi

* Title
Approvers Vi

‘Code merge

Add [WIP] to the title, to prevent a Work In Progress (WIP) merge request from being merged before it is ready
Settings

Description
= i= r &4 s h
«~2HB =E®»eo QBN Squash Commit Message: @ sSaquas
Configure Squash
Code merge

2. After the merge request is reviewed and approved, the request can be
merged.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

CodeArts Repo
User Guide

18 Managing Merge Requests

Step 5 Check the effect after Squash is enabled. After the request is successfully merged

as shown in the following figure, click the Code, Commits, and Commits tabs,

select the master branch. Compared with Step 4, the committed content has been

merged.

Homepage

Repo Commit

L © Create Build Task

-

@ Home <> Code) MergeRequests 1 (% Reviews [Associated Work ltems 77 Repository Statistics ~ i= Activities & Members & Settings

[3 0.07MBFies ©

--—-End

Commits ~ Graph master v - Al

Unfavorite 1 v

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

153

CodeArts Repo
User Guide 19 Managing Code Files

Managing Code Files

19.1 Managing Files
CodeArts Repo allows you to edit and compare files, and trace file changes.

When you access the repository details console, you will be on the Files subtab of
the Code tab page. You can switch to different branches and tags to view the files
in the corresponding version. As shown in the following figure, the file list under
the main branch is displayed on the left, the repository name (file details of a
branch or tag version) and history (branch or tag version) tab pages are displayed
on the right.

& Home <> Code 1% Merge Requests 0 @ Reviews B Associated Work Itams 71 Repository Statistics = Activities & Members {3 settings
[50.11 MB Files 1 Commits ¥ 1Branches © 0Tags Tl Comparison

master
repot Create v

repol 2 History

com
com 2904125 - initial commit
gitignore
gitignore ¢290125 - initial commit
README md

README md €290d125 - initial commit
build xmi

build. xml €280d125 - initial commit

File List

The file list is on the left of the Files tab page of the repository. The file list
provides the following functions:

1. Click a branch name to switch the branch and tag. After the branch and tag
are switched, the file directory of the corresponding version is displayed.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

CodeArts Repo

User Guide 19 Managing Code Files
‘ master ~
\ repo / | + Creat
Q
Branches 2 Tags 0O
Y master default
Dev

+ Create Branch

LR T

2. Click Q to display the search box. You can search for files in the file list.

: master v
Q
SIC
1Y gitignore

M} README.md

porm.xmi

3. Click P Sheak v . The following functions can be extended:

NOTICE

Multi-level directories are supported when you create a file, rename a file,
create a directory, or create a submodule. Separate multi-level directories with
slashes (/), for example, java/com.

- Creating a file

Creating a file on the CodeArts Repo console is to create a file and run
the add, commit, and push commands. A commit record is generated.

On the Create File page, enter the file name, select the target template
type, select the encoding type, enter the file content and commit
information, and click OK.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

CodeArts Repo
User Guide

19 Managing Code Files

L] NOTE
The Commit Message field is equivalent to the -m message in git commit and
can be used to view associated work items by referring to 11.7.
- Creating a directory

Creating a directory on the CodeArts Repo console is to create a folder
structure, and run the add, commit, and push commands. A commit
record is generated.

A .gitkeep file is created at the bottom of the directory by default
because Git does not allow a commit of an empty folder.

On the Create Directory page, enter the catalog name and commit
information, and click OK.

- Create a submodule
- Uploading a file

Uploading a file on the CodeArts Repo console is to create a file and run
the add, commit, and push commands. A commit record is generated.

On the Upload File page, select the target file to be uploaded, enter the
commit information, and click OK.

(10 NOTE

Move the cursor to the folder name and click * to perform the preceding operations
in the folder.

[+
Move the cursor to the file name and click — to change the file name.

Renaming a file on the CodeArts Repo console is to change a file name, and
run the add, commit, and push commands. A commit record is generated.

You can click a file name to display the file content on the right of the page.
You can modify the file content, trace file modification records, view historical
records, and compare the file content.

Repository Name Tab Page: Viewing File Details of a Branch or Tag Version

By default, the repository name tab page displays file details of the master
branch.

repo / + Creale v

R
com

2 25 - initial commit Repo Updated Mar 24, 2023 11:07:45 GMT+08:00

gitignore c290d125 - initial commit Repo Updated Mar 24, 2023 11:07:45 GMT+08:00

README.md c2004125 - initial commit Repo Updatex

bui

023 11:07:45 GMT+08:00

ild x| €290d125 - initial commit Repo Updated Mar 24, 2023 11:07:45 GMT+08:00

It displays the following information:

File. name of a file or folder.

Commit message. message of the last commit to the file or folder (-m in the
commit command). You can click the message to display the commit record.

Creator. creator of the last commit to the file or folder.
Update time: last update time of the file or folder.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

CodeArts Repo
User Guide 19 Managing Code Files

(11 NOTE

Commit messages are required for the edit and delete operations. These operations are
similar to -m in the git commit command and can be used to view associated work items

by referring to 11.7.

History Tab: Viewing the Commit History of a Branch or Tag Version
The History tab page displays the commit history of a branch or tag version.

repo / + Create v

-

All Members - Q

initial commit =)

Repo Created Mar 24, 2023 1:07-45 GMT+08:00

& Create Branch

10 = PerPage. Total 1 Records | © Create Tag

& Chemy-Pick
< Revert

@ Browse Code

On this page, you can perform the following operations on the commit history:
e C(lick a commit name to go to the commit details page.

e Click * to extend the following functions:

- Create Branch.
- Create Tag: You can create a tag for this commit.(What is a tag?)

- Cherry-Pick: Use the commit as the latest commit to overwrite a branch.
It is used to retrieve a version.

- Revert: undoing this commit

- Browse Code.

Managing Repository Files
You can click a file name to manage the file. The functions are as follows:

repo / buildxmi

build.xml

(11 NOTE

When you maximize the browser window, the functions in the drop-down menu shown in
the preceding figure are displayed in tile mode.

e File name. View the detailed content of the file.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

CodeArts Repo
User Guide

19 Managing Code Files

Table 19-1 Screen description

Screen
Function

Function Description

File Capacity Indicates the capacity of the file.

Full Screen Full screen to view the file content

Copy Code Copy the file content to the clipboard.
Open Raw You can view the original data of the file.
Edit Edit the file online.

Download Download the file to the local PC.

Delete Delete a file

File content The email content is displayed.

[Click this icon to add review comments.

Blame: View the change history of a file and trace operations.

On this tab page, a modifier corresponds to their modified content. You can a
record to view the commit details.

History: View the commit history of the file.

On this page, you can perform the following operations on the commit

history:

- Click a commit name to go to the commit details page.

E provides the following functions:

Create Branch.
Create Tag: You can create a tag for this commit. (What is a tag?)

Cherry-Pick: Use the commit as the latest commit to overwrite a
branch. It is used to retrieve a version.

Revert: undoing this commit

Browse Code.

Comparison: compares the committed differences.

The differences compared on the CodeArts Repo console are displayed in a
better way than those on the Git Bash client. You can select different commit
batches on the GUI for difference comparison.

(11 NOTE

The comparison result shows the impact of merging from the left repository version to
the right repository version on the files in the right repository. If you want to know the
differences between the two file versions, you can adjust the left and right positions,
compare them again, and learn all the differences based on the two results.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

CodeArts Repo
User Guide 19 Managing Code Files

19.2 Managing Commits

On the Code and Commits tab pages, view the commit records and graph of the

repository.
Commits
This tab displays the entire commit records of a branch or tag in the current
repository. You can filter records by time segment, committer, commit message, or
commit ID.
Commits Graph master v - Al v Q
2023-03-09 1 Commit
initial commit =] —
BSREREY Created Mar 09, 2003 104007 GMT=03:00 s |8
Graph

The commit graph of a repository displays the entire commit history (including the
action, time, committer, commit message generated by the system or specified by
the committer) of a branch or tag and the relationship between commits in flow
chart.

You can switch between branches or tags. You can click a commit node or commit
message to go to the corresponding commit record.

Commits Graph master w

initial commit

(11 NOTE

Compared with the History tab page under the Files tab page, the commit graph can
display the relationship between commits.

19.3 Managing Branches

Branching is the most commonly used method in version management. Branches

isolate tasks in a project to prevent them from affecting each other, and can be
merged for version release.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

CodeArts Repo
User Guide 19 Managing Code Files

When you create a CodeArts Repo or Git repository, a master branch is generated
by default and used as the branch of the latest version. You can create custom
branches at any time for personalized scenarios.

GitFlow

As a branch-based code management workflow, GitFlow is highly recognized and
widely used in the industry. It is recommended for you to start team-based
development.

GitFlow provides a group of branch usage suggestions to help your team improve
efficiency and reduce conflicts. It has the following features:

e Concurrent development: Multiple features and patches can be concurrently
developed on different branches to prevent intervention during code writing.

e Team collaboration: In team-based development, the development content
of each branch (or each sub-team) can be recorded separately and merged
into the project version. An issue can be accurately detected and rectified
separately without affecting other code in the main version.

e Flexible adjustment: Emergency fixes are developed on the hotfix branch
without interrupting the main version and sub-projects of each team.

Feature ®--@ o

Develop @ @ @ @ @
Release o -0 @ o0

HotFix

Master

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

CodeArts Repo
User Guide

19 Managing Code Files

Table 19-2 Suggestions on using GitFlow branches

Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2.
Descrip | Core Main Feature Release Emergency
tion branch, developmen | developmen | branch, fix branch,
which is t branch, t branch, which is which is
used which is which is used to used to fix
together used for used to check out a | bugs in the
with tags to | routine develop version to current
archive developmen | new be released. | version.
historical t and must | features.
versions. always be Multiple
Ensure that | the branch branches
all versions | with the can exist
are latest and concurrently
available. most . Each
complete branch
functions. corresponds
to a new
feature or a
group of
new
features.
Validit | Long-term Long-term | Temporary | Long-term | Temporary
y
Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

CodeArts Repo

User Guide 19 Managing Code Files
Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2...

When | Created Created e (Created | Created Created
to when the after the based on | based on based on
Create | project master the the develop | the
repository is | branch is develop | branch correspondi
created. created. branch before the ng version
when a first release. | (usually the
new master
feature branch)
develop when issues
ment are found in
task is the master
received. or bug
e Created version.
based on
the
parent
feature
branch
when the
current
feature
develop
ment
task is
split into
sub-
tasks.
When | Never Not Developed Never Developed
to recommend | when being when being
Develo ed created. created.
p This
Branch
Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

CodeArts Repo

User Guide 19 Managing Code Files
Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2... .
When | e When o After After a child | When a -
to the new feature version is to
Merge project features | branch is be released,
Other version is are developed the develop
Branch frozen, develope | and tested, | branch is
es into the d, it is merged | merged into
This develop feature into the this branch.
Branch or branches | parent
release are feature
branch merged branch.
are into this
merged branch.
into this | ¢ \When a
branch. new
o After version
bugs starts to
found in be
the develope
released d, the
version last
are fixed, version
hotfix (release
branches or
are master
merged branch)
into this is
branch. merged
into this
branch.
Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

CodeArts Repo
User Guide

19 Managing Code Files

Branch | Master Develop Feature_1\ | Release HotFix_1\2.
2... .
When | - e When a After new e When a When the
to version is | features are version is | correspondi
Merge to be developed released | ng bug
This released, | and tested and fixing task
Branch this on this archived, | is complete,
to branch is | branch, it is this this branch
Other merged merged into branch is | is merged
Branch into the | the develop merged into the
es release branch. into the master and
branch. master develop
e When a branch. branches as
version is e Whena |2 Ppatch.
to be new
archived, version is
this develope
branch is d based
merged ona
into the released
master version,
branch. this
branch is
merged
into the
develop
branch
to
initialize
the
version.
When | - - After the - After the
to End correspondi correspondi
ng features ng bugs are
are fixed and
accepted the version
(released is accepted
and stable). (released
and stable)

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

164

CodeArts Repo
User Guide 19 Managing Code Files

(11 NOTE

GitFlow has the following rules:

e All feature branches are pulled from the develop branch.

e All hotfix branches are pulled from the master branch.

e All commits to the master branch must have tags to facilitate rollback.

e Any changes that are merged into the master branch must be merged into the develop
branch for synchronization.

e The master and develop branches are the main branches and they are unique. Other
types of branches can have multiple derived branches.

Creating a Branch on the Console
Step 1 Access the repository list.
Step 2 Click a repository to go to the details page.
Step 3 Click the Code and Branches tabs. The branch list page is displayed.

Step 4 Click Create. In the displayed dialog box, select a version (branch or tag) based on
which you want to create a branch and enter the branch name. You can associate
the branch with an existing work item.

Create Branch

Characters left: 2000 more characters.

Work ltems to Associate

Cancel

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

CodeArts Repo
User Guide

19 Managing Code Files

(11 NOTE

The branch name must meet the following requirements:

e The name cannot start with a hyphen (-), period (.), refs/heads/, refs/remotes/, or
slash (/).

e Spaces and these special characters are not supported: [\<~A:2*1()"|$&;
e The name cannot end with a period (.), slash (/), or .lock.

e Two consecutive periods (..) are not allowed.

e The name cannot contain this sequence @{.

The name cannot be the same as another branch or tag name.

Step 5 Click OK. The branch is created.

--—-End

Managing Branches on the Console

You can perform the following operations in the branch list:

Filtering branches

- My: displays all branches created by you. The branches are sorted by the
latest commit time in descending order.

- Active: displays the branches that have been developing in the last
month. Branches are sorted by the last commit time in descending order.

- Inactive: displays the branches that have not been developed in the last
month. Branches are sorted by the last commit time in descending order.

- AlL displays all branches. The default branch is displayed on the top.
Other branches are sorted by the last commit time in descending order.

You can click a branch name to go to the Files tab page of the branch and
view its content and history.

You can click a commit ID to view the content latest committed on the details
page.
Select branches and click Batch Delete to delete branches in batches.

You can click ¢ to associate work items with the branch.

You can click “ to go to the Comparison tab page and compare the current
branch with another branch.

You can click - to download its compressed package.

You can click © to access the Merge Requests tab page and create a
merge request.

You can click © to go to the repository settings page and set the branch as
protected.

You can click O] to delete a branch as prompted.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

CodeArts Repo
User Guide

19 Managing Code Files

NOTICE

You can download the compressed package of source code on the page only for
hosts that have configured IP address whitelists.

If you delete a branch by mistake, submit a service ticket to contact technical
support.

In addition, you can configure branches on the console.

Merge Requests Settings
Default Branch
Protected Branches

Common Git Commands for Branches

Creating a branch

git branch <branch_name> # Create a branch based on the current working directory in the
local repository.

Example:

git branch branch001 # Create a branch named branch001 based on the current working

directory in the local repository.

If no command output is displayed, the creation is successful. If the branch
name already exists, as shown in the following figure, create a branch with
another name.

Switching a branch

Switching a branch is to check out the branch file content to the current

working directory.
git checkout <branch_name> # Switch to a specified branch.

Example:
git checkout branch002 # Switch to branch002.

The following information shows that the switch is successful.

~/Desktop,/01_developer

§ git checkout branch00l

Switched to branch "branch0o0l’

Switching to a new branch
You can run the following command to create a branch and switch to the new
branch directly.

git checkout -b <branch_name> # Create a branch based on the current working directory in the
local repository and directly switch to the branch.

Example:

git checkout -b branch002 # Create a branch named branch002 based on the current working
directory in the local repository and directly switch to the branch.

The following information shows that the command is successfully executed.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

CodeArts Repo
User Guide

19 Managing Code Files

Viewing a branch

You can run the corresponding command to view the local repository branch,
the remote repository branch, or all branches. These commands only list
branch names. You can switch to a branch to view specific files in a branch.

git branch # View the local repository branch.
git branch -r # View the remote repository branch.
git branch -a # View the branches of the local and remote repositories.

The following figure shows the execution result of the three commands in
sequence. Git displays the branches of the local and remote repositories in
different formats. (Remote repository branches are displayed in the format of
remote/<remote_repository alias>/<branch_name>.)

¥ git branch
branchool

htt
htt

% git branch -r

¥ g1t branch -a
branch0ol

https1

Merging a branch

When a development task on a branch is complete, the branch needs to be
merged into another branch to synchronize the latest changes.

git merge <name_of the_branch_merged_to_the_current branch> # Merge a branch into the
current branch.

Before merging a branch, you need to switch to the target branch. The
following describes how to merge branch002 into the master branch.

git checkout master # Switch to the master branch.

git merge branch002 # Merge branch002 into the master branch.

The following figure shows the execution result of the preceding command.
The merge is successful, and three lines are added to a file.

to br
our branch 1is

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

CodeArts Repo
User Guide

19 Managing Code Files

(11 NOTE

The system may prompt that a merge conflict occurs. The following shows that a
conflict occurs in the fileOnBranch002.txt file.

To resolve the conflict, open the conflicting file, manually edit the conflicting code (as
shown in the following figure), and save the file. Then run the add and commit
commands again to save the result to the local repository.

el _HEAD

1l <«—— conflict

222
srrarrr branchl0Z
alale!
a9

Deleting a local branch
git branch -d <branch_name>
Example:

git branch -d branch002 # Delete branch002 from the local repository. The following
information shows that the operation is successful.

£ git branch -d branch002

Deleted branch branch002? (was B8:

Deleting a branch from the remote repository
git push <remote_repository_address_or_alias>-d <branch_name>
Example:

git push HTTPSOrigin -d branch002 # Delete branch002 from the remote repository whose alias
is HTTPSOrigin. The following information shows that the deletion is successful.

§ git pu
o htt

- [delete

Pushing a new local branch to the remote repository
git push <remote_repository_address_or_alias> <branch_name>
Example:

git push HTTPSOrigin branch002 # Push the local branch branch002 to the remote repository
whose alias is HTTPSOrigin. The following information shows that the push is successful.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

CodeArts Repo
User Guide 19 Managing Code Files

(11 NOTE

If the push fails, check the connectivity.
Check whether your network can access CodeArts Repo.

Run the following command on the Git client to test the network connectivity:
ssh -vT git@******** com

If the returned information contains connect to host ********** com port 22: Connection
timed out, your network is restricted and you cannot access CodeArts Repo. In this case,
contact your local network administrator.

19.4 Managing Tags

Git provides tags to help your team manage versions. You can use Git tags to
mark commits to manage important versions in a project and search for historical
versions.

A tag points to a commit like a reference. No matter how later versions change,
the tag always points to the commit. It can be regarded as a version snapshot that
is permanently saved (the version is removed from the repository only when being
manually deleted).

When using Git to manage code, you can search for and trace historical versions
based on commit IDs. A commit ID is a long string (as shown in the following
figure) that is difficult to remember and not identifiable, compared with version
numbers such as V 1.0.0. Therefore, you can tag and name important versions to
easily remember and trace them. For example, tag a version as myTag_V1.0.0 or
FirstCommercialVersion.

)bbd (tag: myTag_V1.0.0)

Creating a Tag for the Latest Commit on the Console
Step 1 Access the repository list.
Step 2 Click a repository to go to the details page.
Step 3 Click the Code and Tags tabs. The tag list is displayed.
Step 4 Click Create. In the following dialog box that is displayed, select a branch or tag.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

CodeArts Repo

User Guide 19 Managing Code Files
Create Tag X
* Tag Name
Description
ou can add 2000 more characters .
(11 NOTE

The tag name must meet the following requirements:

e The name cannot start with a hyphen (-), period (.), refs/heads/, refs/remotes/, or
slash (/).

e Spaces and special characters such as [\<~A:?*1()"'|$&; are not supported.
e The name cannot end with a period (.), slash (/), or .lock.

e Two consecutive periods (..) are not allowed.

e The name cannot contain this sequence @{.

An annotated tag is generated if you enter a message (the content after -m). A lightweight
tag is generated if you do not enter a message. (What are annotated tags?)

The name cannot be the same as another branch or tag name.

Step 5 Click OK. A tag is generated based on the latest version of the branch. The tag list
is displayed.

--—-End

Creating a Tag for a Historical Version on the Console
Step 1 Access the repository list.
Step 2 Click a repository to go to the details page. On the Code tab page, click the Files
and History tabs.

Step 3 In the historical commit list, click * next to a commit record and select Create
Tag. The dialog box for creating a tag for the historical version is displayed.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

CodeArts Repo
User Guide 19 Managing Code Files

(11 NOTE

An annotated tag is generated if you enter a message (the content after -m). A lightweight
tag is generated if you do not enter a message. (What are annotated tags?)

Step 4 Click OK. A tag is generated based on the specified historical version of the
branch. The tag list is displayed.

--—-End

Managing Tags on the Console

e All tags in the remote repository are displayed in the tag list. You can perform
the following operations:

Tag Name Create Info Operation
Version2.0 & —
SIS naced On master Created Apr 13,2023 17 A
Repo Commit 25] - initial commit Mar 24, 2023 11:07:45 GMT+08:00

Version1.0 =

RIS Baced On master Craated Aor 13, 2023 17 +

Repo Committed c2904125 - initial commit Mar 24, 2023 11:07:45 GMT+08:00

- Click a tag in the Tag Name column to go to the file list of the tagged
version.

- Click a commit ID to go to the commit details page.

- Click — to download the file package of the labeled version in tar.gz or
zip format.

- Click @ to delete a tag from CodeArts Repo. (To delete the tag from the
local repository, perform the clone, pull, or -d operation.)

NOTICE

If an IP address whitelist is set for the repository, only hosts with whitelisted
IP addresses can download the repository source code on the page. If no IP
address whitelist is set for the repository, all hosts can download the
repository source code.

e You can create a branch based on a tag.

e On the console, click the Files tab and click the file name of the target file.
Click the Comparison tab to compare commit records of the file.

ool EyBame (QHsoy 1) Compaison

0 fibesas - Remame buldml v - dOcccd - update pommi v

1 dproject nane="javalntDemo” basedir="." default="nain"y i dproject nane="javalntDemo” basedir="." default="nain"

2 <property enviranent="env" /> 2| <property environnent="

3 (property names"src.dir” values"con"/> 3| <property name="src.dir” value="con’/>

4 4

5 dproperty nane="build.dir" v 5| <property nane="build.dir" value="build"/>

6 <proerty na {bui 6| <prop me="classes, dir' "${build.dir}/classes" />

T {property nanes {bui 7| <property name="jar.dir" value="§{build.dir}/far"/>

8 <property nane="report.dir" {bui 8| <property nane="report.dir" value="${build.dir}/junitreport"/>

9 <taskdef nane="findbugs" classname="ed 9| <taskdef nane="findbugs" classname="edu.und.cs.Findbugs . anttask.FindBugsTa
10~ <property nane="fb.report.dir" value="${build dir}/findbugs"/> 1e4

i 1

12 <path id="application” location="§{jar.dir}/${ant project.name}.jar"/> 12| <path id="application” location="§{jar.dir}/${ant project. name}.jar"/5

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

CodeArts Repo
User Guide

19 Managing Code Files

Tag Classification

Git provides two types of tags:

Lightweight tag: is only a reference pointing to a specific commit. It can be

considered as an alias for the commit.
git tag <tag_name>

The following figure shows the information of a lightweight tag. You can find
that it is an alias of a commit.

diff --git a/7370149fix b/7370149fix
new file mode 100644

index 0000000..76d9127

-- /dev/null

+++ b/7370149fix

Annotated tag: points to a specific commit, but is stored as a complete object
in Git. Compared with lightweight tags, annotated tags contain messages
(similar to code comments). In addition to the tag name and message, the
tag information includes the name and email address of the person who
creates the tag, and tag creation time/date.

git tag -a <tag_name>-m "<message>"

The following figure shows the information of an annotated tag, which points
to a commit and contains more information than that of a lightweight tag.

tag: namel, tag: esay

iff --git a/7370149fix b/7370149fix
e mode 100644
000000. . 76d9127
v/null
370149fix

ine at end of file

(11 NOTE

Both types of tags can identify versions. Annotated tags contain more information and are
stored in a more stable and secure structure in Git. They are more widely used in large
enterprises and projects.

Common Git Commands for Tags

Creating a lightweight tag
git tag <tag_name> # Add a lightweight tag to the latest commit.

Example:

git tag myTag1 # Add a lightweight tag myTag?1 to the latest commit.
Creating an annotated tag

git tag -a <tag_name>-m "<message>" # Add an annotated tag to the latest commit.
Example:

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

CodeArts Repo
User Guide 19 Managing Code Files

git tag -a myTag2 -m "This is a tag." # Add an annotated tag myTag2 to the latest commit, and the
message is "This is a tag.".

e Tagging a historical version

You can also tag a historical version by running the git log command to
obtain the commit ID of the historical version. The following uses an

annotated tag as an example:
git log # The historical commit information is displayed. Obtain the commit ID (only the
first several digits are required), as shown in the following figure. Press q to return.

git tag -a historyTag -m "Tag a historical version." 6a5b7c8db # Add tag historyTag to the
historical version whose commit ID starts with 6a5b7c8d, and the message is "Tag a historical
version.".

(11 NOTE

e If no command output is displayed, the tag is successfully created. If the command
output is displayed, indicating that the tag name already exists (as shown in the
following figure), change the tag name and perform the operation again.

~/Desktop,/01_developer

e One commit can have multiple tags with unique names, as shown in the following
figure.

aster, tag: tags, tag: tag4, tag: tag3, tag: tag2, tag: tagl, tag: namel, t

e Viewing tags in the local repository

You can list all tag names in the current repository and add parameters to

filter tags when using them.
git tag

e Viewing details about a specified tag
git show <name_of the _desired tag>

Example:

Display the details about myTag1 and the commit information. The following
shows an example command output:
git show myTag1

530bbd (tag: myTagl)

2 fix a bug

diff --git a/file0l b/filell
index e0afObd..b3b2032 100644
——— a/file0l
+++ b/file0l

e Pushing a local tag to the remote repository

- By default, tags are not pushed when you push files from the local
repository to the remote one. Tags are automatically synchronized when

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

CodeArts Repo
User Guide

19 Managing Code Files

you synchronize (clone or pull) content from the remote repository to the
local one. Therefore, if you want to share local tags with others in the

project, you need to run the following Git command separately.
git push <remote_repository_address_or_alias> <name_of the_tag_to_be_pushed> # Push
the specified tag to the remote repository.

Example:
Push the local tag myTag1 to the remote repository whose alias is origin.
git push origin myTag1

- Run the following command to push all new local tags to the remote

repository:
git push <remote_repository address_or_alias> --tags

(11 NOTE

If you create a tag in the remote repository and a tag with the same name in the
local repository, the tag will fail to be pushed due to the conflict. In this case, you
need to delete one of the tags and push another tag again.

Deleting a local tag
git tag -d <name_of the tag_to_be _deleted>

The following shows an example of deleting the local tag tag1.

~f F01_de Jer

Deleting a tag from the remote repository

Similar to tag creation, tag deletion also needs to be manually pushed.
git push <remote_repository_address_or_alias> :refs/tags/<name_of _the_tag to_be_deleted>
The following shows an example of deleting a tag.

git push HTTPSOrigin :refs/tags/666 # Delete the tag 666 from the remote repository whose
alias is HTTPSOrigin.

Obtaining a Historical Version Using Tags

If you want to view the code in a tagged version, you can check it out to the
working directory. The code can be edited but cannot be added or committed
because the checked-out version belongs only to a tag instead of a branch. You
can create a branch based on the working directory, modify the code on the
branch, and merge the branch into the master branch. The detailed steps are as
follows:

1.

Check out a historical version using a tag.
git checkout V2.0.0 # Check out the version tagged with V2.0.0 to the working directory.

Create a branch based on the current working directory and switch to it.
git switch -c forFixVv2.0.0 # Create a branch named forFixV2.0.0 and switch to it.

fd /403

witched to a new branch 'forFixvz.0.0'

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

CodeArts Repo

User Guide 19 Managing Code Files

3. (Optional) If the new branch is modified, commit the changes to the

repository of the branch.
git add . # Add the changes to the temporary zone of the new branch.
git commit -m "fix bug for V2.0.0" # Save the changes to the repository of the branch.

3 git add .

4. Switch to the master branch and merge the new branch (forFixV2.0.0 in this

example) to the master branch.
git checkout master # Switch to the master branch.
git merge forFixVv2.0.0 # Merge the changes based on the historical version into the master

branch.

(1] NOTE

The preceding commands are used to help you understand how to obtain a historical
version using a tag. Omit or add Git commands as required.

19.5 Managing Comparison

Click the Code and Comparison tabs of the repository details page, you can view
the code changes between branches or between tag versions through comparison.

Comparison
Select a branch or tag from each list or enter a commit id directly, then click
Source branch Target Branch
¥ master ¥ Dev
Create Merge Request
Commits 3 Files Changed 2
All Change Types v Total files: 2 changed +2 Q Open File (Ctrl+P) <+ Show A 2 Settings
A file03 +1 LE
AR
L +B modify in master B
ccc o
v build.xml — porm.xm| +1 =]

After comparing branches, you can create a merge request as needed.

Issue 01 (2024-11-11)

Copyright © Huawei Cloud Computing Technologies Co., Ltd.

176

CodeArts Repo
User Guide 20 Security Management

20 Security Management

For higher security, CodeArts Repo allows you to add IP addresses to the whitelist,
change the repository owner, delete the repository, change the repository name,
add watermarks, lock the repository, and record audit logs. For details, see the
following sections. Only the users who have the permission to set repo groups or
repositories can perform these operations. For details about how to set
permissions, see Configuring Repo-Level Permissions.

Configuring a Deploy Key

For security purposes, some repositories can only be cloned and downloaded and
do not support other change operations such as merge code. You can configure a
deploy key for a read-only repository. To generate a deploy key locally, choose
Settings > Security Management > Deploy Key on the repository details page.
On the Deploy Key page, click Add Deploy Key. For details about how to
generate an SSH key locally, see step 1 to step 3 in Configuring an SSH Private
Key.

(11 NOTE

e Multiple repositories can use the same deploy key, and a maximum of 10 deploy keys
can be added to a repository.

e The difference between an SSH key and repository deploy key is that the former is
associated with a user and PC and the latter is associated with a code repository. The
SSH key has the read and write permissions on the repository, and the deploy key has
the read-only permission on the repository.

e The settings take effect only for the repository configured.

Risky Operations

CodeArts Repo allows you to change the repository owner, delete a repository, and
change the repository name, but these operations are also risky. Exercise caution
when performing these operations.

To configure risky operations, choose Settings > Security Management > Risky
Operations on the repository details page. The following operations are
supported:

e Transfer repository ownership: You can transfer the current repository to
another member in the repository (but not to a viewer).

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

CodeArts Repo
User Guide

20 Security Management

e Delete repository: Once you delete the repository, all content in the repository
will be permanently deleted. This operation cannot be undone. Please exercise
caution.

e Rename repository: This will invalidate the original path for access and clone.
Please exercise caution.

Adding Watermark to a Repository

CodeArts Repo allows you to add watermarks to repositories to protect intellectual
property rights.

To set watermarks, choose Settings > Security Management > Watermark on
the repository details page.

After the watermark is enabled, the repository displays the following watermark
content: account + time.

Locking a Repository in CodeArts

You can lock a repository to prevent anyone from damaging its upcoming versions.

To lock a repository, choose Settings > Security Management > Repository
Locking on the repository details page. Repo members with the settings
permission can perform this operation.

If the watermark is enabled, the repository is locked and read-only. No one can
commit code to any branch, create comments, or perform other related
operations.

Setting an IP Address Whitelist for CodeArts Repo

In CodeArts, you can set the IP address range and access for the IP address
whitelist to restrict users' access, upload, and download permissions, enhancing
repository security. The IP address whitelist takes effect only for repos whose
visibility is Private, Read-only for project members, and Read-only for tenant
members.

To configure the IP address whitelist, you can choose Settings > Security
Management > IP Address Whitelist on the repository details page. IPv4 and
IPv6 are supported. The following table lists the three formats of IP address
whitelists.

Click Add IP Whitelist and set parameters by referring to the following table. To

modify an IP address whitelist, click the 4 in the row where the IP address
whitelist is located.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

CodeArts Repo
User Guide

20 Security Management

Table 20-1 Parameters for creating an IP address whitelist

Parameter

Description

IPv4

If you select this option, you can
specify an IP address, set an IP address
range, or set a route in CIDR format.
The differences are as follows:

e |P address: The IP address will be
added to the whitelist. For example,
you can add the IP address of your
personal computer to the whitelist.

e IP address segment: If you have
multiple servers and the IP address
segments are consecutive or your IP
addresses dynamically change in a
network segment, you can add an
IP address segment. Example:
100.%*.0 - 100.*.*.255.

e CIDR: When your server is on a LAN
and uses CIDR routing, you can
specify a 32-bit egress IP address of
the LAN and the number of bits of
a specified network prefix. Requests
from the same IP address are
accepted if the network prefix is the
same as the specified one.

IPv6

If you select this option, you can
specify an IP address and an IP address
range. For details, see IP address and
IP address segment.

Description

Optional.

Access Control

Optional. Select the corresponding
options as needed.

e Allowed to access the repository:
Only whitelisted IP addresses and
the repository owner can access the
repository.

e Allowed to download code: If this
option is selected, IP addresses in
the whitelist can download code
online and clone code locally.

e Allowed to commit code: Only
whitelisted IP addresses can modify
and upload code online, or commit
code locally. Code-based build
project orchestration and YAML file
synchronization are not affected.

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

CodeArts Repo
User Guide 20 Security Management

(11 NOTE

To set an IP address whitelist for all repositories of a tenant, log in to the repository list
page of CodeArts Repo, click the alias in the upper right corner, and choose All Account
Settings > Repo > IP Address Whitelist. The configuration rules are the same as the
preceding configuration.

CodeArts Repo Audit Logs

CodeArts Repo allows you to modify repository attributes. It records information
such as code commits and merge requests about the code repository. Each audit
log contains the operator, operation type, and operation content. You can filter
and view audit logs by time.

Adjusting Repository Visibility
CodeArts Repo allows you to adjust the visibility of repositories.

On the CodeArts homepage, click the profile picture and choose All Account
Settings. In the navigation pane on the left, choose Repo > Repo Visibility
Adjustment, and click Adjust to adjust the visibility of the code repo of a tenant.

e If the page shown in the following figure is displayed, you can create a public
code repository (group) and set the visibility of the code repository to public.

Set Public Allowed:You can currently create public repos (groups) and change private repos to public.

Adjust

e If the page shown in the following figure is displayed, the public code
repository (group) cannot be created and the visibility of the code repository
cannot be set to public.

Set Public Not Allowed:You can currently only create private repos {groups) and cannot change private repos to public

Adjust

Issue 01 (2024-11-11) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

	Contents
	1 Process of CodeArts Repo
	2 Purchasing CodeArts
	3 Accessing CodeArts Repo Homepage
	4 Environment and Personal Settings
	4.1 Installing and Configuring Git
	4.2 Key
	4.3 Configuring an SSH Private Key
	4.4 Configuring HTTPS Password
	4.5 Configuring an Access Token
	4.6 Configuring a GPG Public Key
	4.7 Configuring Git LFS

	5 Migrating Code and Syncing a Repository
	5.1 Repository Migration Overview
	5.2 Migrating a Third-Party Git Repository to CodeArts Repo
	5.2.1 Importing a Git Repository Using a URL
	5.2.2 Importing a GitHub Repository

	5.3 Importing a Local Git Repository to CodeArts Repo
	5.4 Migrating an SVN Code Repository
	5.5 Syncing Repo Settings
	5.6 Verifying the Import Permission
	5.7 Obtaining an Access Token
	5.8 Entering Basic Information for a Repository

	6 Creating a Repository
	6.1 Creating Repos in Different Scenarios
	6.2 Creating a Repository
	6.3 Creating a Repository Using a Template
	6.4 Forking a Repository

	7 Viewing Activities
	8 Viewing Repository Statistics
	9 Configuring Repository Settings
	9.1 Configuring Repository Policies
	9.1.1 Configuring Protected Branch Rules
	9.1.2 Configuring Protected Branch Rules
	9.1.3 Configuring Code Commit Rules
	9.1.4 Review Comments
	9.1.5 MR Evaluation

	10 Hierarchical Repository Management
	10.1 Creating a Repository Group
	10.2 Using Repository Groups
	10.2.1 Viewing the Repository Group List
	10.2.2 Viewing Repository Group Details
	10.2.3 Viewing the Repository Group Homepage
	10.2.4 Managing Members of a Repository Group

	10.3 Configuring Repository Groups
	10.3.1 Repository Group Information
	10.3.2 Repository Settings
	10.3.3 Risky Operations
	10.3.4 Permission Management

	11 Configuring a Repository
	11.1 Configuring Repository Settings
	11.2 Viewing the Repository List
	11.3 Viewing Repository Details
	11.4 Viewing Repository Homepage
	11.5 Backing Up a Repository

	12 Managing Repo Member Permissions
	12.1 IAM Users, Project Members, and Repository Members
	12.2 Configuring Project-Level Permissions
	12.3 Configuring Repo-Level Permissions
	12.4 Syncing Project Members to CodeArts Repo

	13 Cloning or Downloading Code Repo to a Local PC
	13.1 Differences Between Cloning and Downloading a Repository
	13.2 Using the SSH Key to Clone a Repo to a Local PC
	13.3 Using HTTPS to Clone Code from CodeArts Repo to a Local Computer
	13.4 Using a Browser to Download Code Package to a Local PC

	14 Uploading Code Files to CodeArts Repo
	14.1 Editing and Creating a Merge Request
	14.2 Creating a Branch and Developing Code in Git Bash
	14.3 Committing Code in Eclipse and Creating a Merge Request
	14.4 Using git-crypt to Transmit Sensitive Data on the Git Client
	14.5 Viewing Commit History

	15 Developing a Workflow
	15.1 Workflow Overview
	15.2 Centralized Workflow
	15.3 Feature Branch Workflow

	16 Creating and Configuring a CodeArts Project
	16.1 Configuring Project-Level Commit Rules
	16.2 Configuring Project-Level Repo Settings
	16.3 E2E Settings
	16.4 Webhook Settings

	17 Committing Code to CodeArts Repo and Creating a Merge Request
	17.1 Setting Repo-Level Merge Request Rules
	17.2 Configuring Merge Request Notifications
	17.3 Resolving Review Comments and Merging Code

	18 Managing Merge Requests
	18.1 Detailed Description of Review Comments Gate
	18.2 Resolving Code Conflicts in an MR
	18.3 Creating a Squash Merge

	19 Managing Code Files
	19.1 Managing Files
	19.2 Managing Commits
	19.3 Managing Branches
	19.4 Managing Tags
	19.5 Managing Comparison

	20 Security Management

